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In this note we introduce the contraction-type assumptions for multivalued mappings
and prove some fixed points theorems without using of the Hausdorff distances between
subsets of a metric space.
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1. Preliminaries

Typically, a fixed point theorem for multivalued mappings goes back to some fixed point theorem for single-valued map-
pings. Such a correlation basically deals with the substitution of a given metric, say d, on a space X by the corresponding
Hausdorff “metric” Hausd on the set of all closed subsets of X . It seems, S. Nadler Jr. [4] was first who replaced the Banach
contraction assumption

d
(

f (x), f (y)
)
� C · d(x, y) < d(x, y),

by its multivalued analog

Hausd
(

F (x), F (y)
)
� C · d(x, y) < d(x, y)

and proved the fixed point theorem for such a mapping F : X → X with nonempty closed values F (x) ⊂ X in a complete
metric space (X;d).

An analogous replacement for F. Browder type inequalities

Hausd
(

F (x), F (y)
)
� ϕ

(
d(x, y)

)
< d(x, y)

or, for E. Racotch type inequalities

Hausd
(

F (x), F (y)
)
� k

(
d(x, y)

) · d(x, y) < d(x, y)

for various kinds of numerical functions ϕ : [0;∞) → [0;∞), k : [0;∞) → [0;1) one can find in a lot of papers, see e.g.
[1–3,5], etc.
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Let us emphasize that one of the oldest open problems in the area is the following question, stated by S. Reich in 1974.

Question 1.1. Let k : [0;∞) → [0;1) and ∀t > 0, lim sups→t+0 k(s) < 1. Is it true that any k-contraction of a complete metric
space has a fixed point?

The answer is affirmative for compact-valued contractions [6] and for closed-valued contractions but with the substitu-
tion t � 0 instead of t > 0 in the assumption above [3].

In this note we show that the using of the Hausdorff distance is, in general, a superfluous assumption for an existence
of a sequence of successful approximations tending to a fixed point of F : X → X , x ∈ F (x). It appears, that one can directly
use the distance function

dF (x) = dist
(
x; F (x)

)
, x ∈ X

rather than Hausd . See [7,8] for somewhat similar approaches.

Definition 1.2. For a point x ∈ X of a metric space (X;d) and for A ⊂ X a sequence {ym} of points ym ∈ A is said to be
(x; A)-sequence if

0 < d(x, ym) → dist(x, A) = inf
{

d(x, y): y ∈ A
}
, m → ∞.

Note, the following are equivalent:

(1) For x ∈ X and A ⊂ X there exists an (x; A)-sequence;
(2) The point x is not an isolated point of A.

Definition 1.3. For a multivalued mapping F : X → X a sequence {ym} is said to be (x; F )-sequence if it is (x; F (x))-sequence.

So, for a numerical function ϕ : (0;+∞) → (0;+∞) a multivalued mapping F : X → X of a metric space (X;d) is said to
be sequential ϕ-contraction if for every x ∈ X there exists an (x; F )-sequence {ym} such that dF (ym) < ϕ(d(x; ym)), m ∈ N.

2. Statements

Theorem 2.1. For any nondecreasing function ϕ : (0;+∞) → (0;+∞) and for any closed-valued sequential ϕ-contraction F : X →
X of a metric space (X;d) one of the following two statements is true:

(a) F has a fixed point;
(b) for each sufficiently large t > 0 there are points xn ∈ X such that for all n ∈N the following are true

xn+1 ∈ F (xn); 0 < d(xn; xn+1) < ϕn(t); 0 < dF (xn+1) < ϕn+1(t).

Proof. Let us check that the negotiation of (a) implies (b). So, suppose that a closed-valued sequential ϕ-contraction
F : X → X admits no fixed points, i.e. dF (x) > 0 for all x ∈ X . A construction of a desired sequence {xn} for (b) follows
to the natural inductive scheme.

(0) Let x0 be an arbitrary point of X , x0 /∈ F (x0) ⇔ dF (x0) > 0.
(1) In accordance with the notion of sequential ϕ-contraction pick any (x0; F )-sequence, say {ym}, such that dF (ym) <

ϕ(d(x0; ym)), m ∈N. In particular, for x1 = y1 ∈ F (x0) we see that

0 < d(x0; x1), 0 < dF (x1) < ϕ
(
d(x0; x1)

)

and for an arbitrary picked t > d(x0; x1) we obtain:
(i1) 0 < d(x0; x1) < t = ϕ0(t);
(ii1) 0 < dF (x1) < ϕ(d(x0; x1)) � ϕ(t) = ϕ1(t).

(n + 1) Let for every 1 � k � n the point xk F (xk−1) was chosen with the properties that
(ik) 0 < d(xk−1; xk) < ϕk−1(t);
(iik) 0 < dF (xk) < ϕk(t).
In accordance with the notion of sequential ϕ-contraction pick any (xn; F )-sequence, say {zm}, and for ε = ϕn(t) −
dF (xn) > 0 choose an appropriate xn+1 = zm(n) ∈ F (xn) such that
(in+1) 0 < d(xn; xn+1) < dF (xn) + ε = ϕn(t);
(iin+1) 0 < dF (xn+1) < ϕ(d(xn; xn+1)) � ϕ(ϕn(t)) = ϕn+1(t). �
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