Contents lists available at [SciVerse ScienceDirect](http://www.ScienceDirect.com/)

Topology and its Applications

www.elsevier.com/locate/topol

On contraction-type assumptions avoiding the Hausdorff distance

Pavel V. Semenov¹

Department of Mathematics, Moscow City Pedagogical University, 2-nd Sel'skokhozyastvennyi pr. 4, Moscow, 129226, Russia

article info abstract

MSC: primary 47H10, 54H25 secondary 47H09, 54E50

Keywords: Complete metric spaces Fixed points Multivalued contractions Hausdorff distance Distance function

In this note we introduce the contraction-type assumptions for multivalued mappings and prove some fixed points theorems without using of the Hausdorff distances between subsets of a metric space.

© 2013 Elsevier B.V. All rights reserved.

1. Preliminaries

Typically, a fixed point theorem for multivalued mappings goes back to some fixed point theorem for single-valued mappings. Such a correlation basically deals with the substitution of a given metric, say *d*, on a space *X* by the corresponding Hausdorff "metric" *Hausd* on the set of all closed subsets of *X*. It seems, S. Nadler Jr. [\[4\]](#page--1-0) was first who replaced the Banach contraction assumption

 $d(f(x), f(y)) \leq C \cdot d(x, y) < d(x, y),$

by its multivalued analog

*Haus*_d($F(x)$, $F(y)$) $\leqslant C \cdot d(x, y) < d(x, y)$

and proved the fixed point theorem for such a mapping $F : X \to X$ with nonempty closed values $F(x) \subset X$ in a complete metric space *(X*;*d)*.

An analogous replacement for F. Browder type inequalities

 $Haus_d(F(x), F(y)) \leq \varphi(d(x, y)) < d(x, y)$

or, for E. Racotch type inequalities

 $Haus_d(F(x), F(y)) \le k(d(x, y)) \cdot d(x, y) < d(x, y)$

for various kinds of numerical functions $\varphi : [0; \infty) \to [0; \infty)$, $k : [0; \infty) \to [0; 1)$ one can find in a lot of papers, see e.g. [\[1–3,5\],](#page--1-0) etc.

E-mail address: pavels@orc.ru.

¹ The author was supported in part by RFBR grant 11-01-00822.

^{0166-8641/\$ –} see front matter © 2013 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.topol.2013.04.016>

Let us emphasize that one of the oldest open problems in the area is the following question, stated by S. Reich in 1974.

Question 1.1. Let $k: [0; \infty) \to [0; 1]$ and $\forall t > 0$, lim sup_{s-att-0} $k(s) < 1$. Is it true that any *k*-contraction of a complete metric space has a fixed point?

The answer is affirmative for compact-valued contractions [\[6\]](#page--1-0) and for closed-valued contractions but with the substitution $t \ge 0$ instead of $t > 0$ in the assumption above [\[3\].](#page--1-0)

In this note we show that the using of the Hausdorff distance is, in general, a superfluous assumption for an existence of a sequence of successful approximations tending to a fixed point of $F: X \to X$, $x \in F(x)$. It appears, that one can directly use the *distance function*

 $d_F(x) = \text{dist}(x; F(x)), \quad x \in X$

rather than *Haus_d*. See [\[7,8\]](#page--1-0) for somewhat similar approaches.

Definition 1.2. For a point $x \in X$ of a metric space $(X; d)$ and for $A \subset X$ a sequence $\{y_m\}$ of points $y_m \in A$ is said to be *(x*; *A)*-sequence if

 $0 < d(x, y_m) \rightarrow dist(x, A) = inf{d(x, y): y \in A}, m \rightarrow \infty.$

Note, the following are equivalent:

(1) For *x* ∈ *X* and *A* ⊂ *X* there exists an $(x; A)$ -sequence;

(2) The point *x* is not an isolated point of *A*.

Definition 1.3. For a multivalued mapping $F: X \to X$ a sequence $\{y_m\}$ is said to be $(x; F)$ -sequence if it is $(x; F(x))$ -sequence.

So, for a numerical function φ : $(0; +\infty) \to (0; +\infty)$ a multivalued mapping $F : X \to X$ of a metric space $(X; d)$ is said to be **sequential** φ **-contraction** if for every $x \in X$ there exists an $(x; F)$ -sequence $\{y_m\}$ such that $d_F(y_m) < \varphi(d(x; y_m))$, $m \in \mathbb{N}$.

2. Statements

Theorem 2.1. *For any nondecreasing function* φ : $(0; +\infty) \to (0; +\infty)$ *and for any closed-valued sequential* φ *-contraction* $F : X \to Y$ *X of a metric space (X*;*d) one of the following two statements is true*:

(a) F has a fixed point;

(b) for each sufficiently large $t > 0$ there are points $x_n \in X$ such that for all $n \in \mathbb{N}$ the following are true

 $x_{n+1} \in F(x_n);$ $0 < d(x_n; x_{n+1}) < \varphi^{n}(t);$ $0 < d_F(x_{n+1}) < \varphi^{n+1}(t).$

Proof. Let us check that the negotiation of *(a)* implies *(b)*. So, suppose that a closed-valued sequential φ -contraction *F* : *X* \rightarrow *X* admits no fixed points, i.e. $d_F(x) > 0$ for all $x \in X$. A construction of a desired sequence $\{x_n\}$ for *(b)* follows to the natural inductive scheme.

(0) Let x_0 be an arbitrary point of *X*, $x_0 \notin F(x_0) \Leftrightarrow d_F(x_0) > 0$.

(1) In accordance with the notion of sequential φ -contraction pick any $(x_0; F)$ -sequence, say $\{y_m\}$, such that $d_F(y_m)$ < φ (*d*(*x*₀; *y_m*)), *m* ∈ N. In particular, for *x*₁ = *y*₁ ∈ *F*(*x*₀) we see that

 $0 < d_F(x_1) < \varphi(d(x_0; x_1))$

and for an arbitrary picked $t > d(x_0; x_1)$ we obtain:

 (i_1) $0 < d(x_0; x_1) < t = \varphi^0(t);$

(ii₁)
$$
0 < d_F(x_1) < \varphi(d(x_0; x_1)) \leq \varphi(t) = \varphi^1(t)
$$
.

(n + 1) Let for every $1 \leq k \leq n$ the point x_k $F(x_{k-1})$ was chosen with the properties that

*(***i**_{*k*})</sub> 0 < $d(x_{k-1}; x_k) < \varphi^{k-1}(t)$;

 (iii_k) $0 < d_F(x_k) < \varphi^k(t)$.

In accordance with the notion of sequential φ -contraction pick any $(x_n; F)$ -sequence, say $\{z_m\}$, and for $\varepsilon = \varphi^n(t)$ – $d_F(x_n) > 0$ choose an appropriate $x_{n+1} = z_{m(n)} \in F(x_n)$ such that (i_{n+1}) $0 < d(x_n; x_{n+1}) < d_F(x_n) + \varepsilon = \varphi^n(t);$

$$
(ii_{n+1}) \ 0 < d_F(x_{n+1}) < \varphi(d(x_n; x_{n+1})) \leq \varphi(\varphi^n(t)) = \varphi^{n+1}(t). \quad \Box
$$

Download English Version:

<https://daneshyari.com/en/article/4659015>

Download Persian Version:

<https://daneshyari.com/article/4659015>

[Daneshyari.com](https://daneshyari.com/)