Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

We prove that if R is a locally compact nondiscrete ring, then for every cardinal number m,

 $\aleph_0 \leq \mathfrak{m} \leq w(R)$ there exists a closed subring S such that $w(S) = \mathfrak{m}$.

The weights of closed subrings of a locally compact ring

Mihail Ursul

Department of Mathematics and Computer Science, University of Technology, Lae, Papua New Guinea

ARTICLE INFO

ABSTRACT

Article history: Received 25 November 2012 Received in revised form 8 March 2013 Accepted 8 March 2013

MSC: 16W80

Keywords: Weight Locally compact ring Almost connected ring Nilring of bounded degree Suitable set

1. Introduction

Our paper is inspired by recent results of S. Hernández, K.H. Hofmann, and S.A. Morris (see [6]). We extend the main results of the paper [6] to locally compact associative rings. If *R* is a compact nilpotent ring of uncountable weight, then for every cardinal number \mathfrak{m} , $\aleph_0 \leq \mathfrak{m} < w(R)$ there exists a closed ideal *I* such that $w(I) = \mathfrak{m}$. Examples 3.1 and 3.2 show that this theorem is not true for all compact rings. It is known that every infinite associative ring contains a commutative infinite subring [9]. We give an independent proof of this result for compact rings. We will use freely the classical result that every totally disconnected compact ring is profinite (see, e.g., [7,11]).

2. Notation and conventions

All rings are assumed associative not necessarily with identity. Topological rings and groups are assumed to be Hausdorff. The Jacobson radical of a ring *R* is denoted by J(R). If *R* is a ring, then its annihilator Ann(R) is the ideal { $x \in R$: xR = Rx = 0}. The symbol R_0 stands for the connected component of zero of a topological ring *R*. If *X* is a subset of a ring *R*, then $\langle X \rangle$ means the subring of *R* generated by *X*.

3. Results

Recall [4, p. 596 and p. 601] that a subset X of a topological group G is called *suitable* if

- (i) X topologically generates G.
- (ii) The identity element $1 \notin X$ and X is discrete and closed in $G \setminus \{1\}$.

E-mail address: mihail.ursul@gmail.com.

© 2013 Elsevier B.V. All rights reserved.

^{0166-8641/\$ –} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2013.03.003

Furthermore, the *generating rank* of a compact group *G* is the minimal cardinal number \aleph for which there is a suitable set *X* of *G* such that card *X* = \aleph . It is denoted by *s*(*G*).

We will need the following results [4, Theorem 12.11 and Proposition 12.28]:

Theorem 3.1. Every compact group *G* has a suitable set.

Theorem 3.2. If G is an infinite totally disconnected compact group, then

 $w(G) = \max\{\aleph_0, s(G)\}.$

Theorem 3.3. If *R* is a compact infinite ring, then for every infinite cardinal $\mathfrak{m} < w(R)$ there exists a closed subring *S* with $w(S) = \mathfrak{m}$.

Proof. We can consider without loss of generality that $w(R) > \aleph_0$.

Let R_0 be the connected component of R. By Kaplansky's Theorem [7, Theorem 8], $RR_0 = R_0R = 0$. If $w(R_0) \ge m$, then we can find a closed subgroup of R_0 of weight m, which automatically will be a subring. Therefore we can assume that $w(R_0) < m$. Then $w(R) = w(R/R_0)$. It suffices to find a closed subring S of R/R_0 of weight m.

Therefore we can consider that *R* is totally disconnected. Let *X* be a suitable set of the additive group of *R*. Then $\operatorname{card}(X) = w(R) > \mathfrak{m}$. Let *Y* be a subset of *X* of cardinality \mathfrak{m} . The set *Z* of all nonzero finite products of elements of *Y* has cardinality \mathfrak{m} . The closed subring *S* generated by *Y*, has the subset *Z* as a set of topological generators of its additive subgroup and is suitable. It follows that $w(S) = \mathfrak{m}$. \Box

Theorem 3.4. Every infinite compact nilring R contains an infinite ideal I for which $I^2 = 0$.

Proof. We can consider without loss of generality that *R* is totally disconnected.

Let *I* be a maximal ideal in the set of ideals with trivial multiplication. If *I* is infinite, the proof is finished. If *I* is finite, then there exists an open ideal *V* such that $V \cap I = 0$. By [12], *R* is a nilring of bounded degree. Then by the Lewitzki–Herstein Theorem [10, p. 180], *V* contains a nonzero nilpotent ideal *N*. If *M* is the ideal of *R* generated by *N*, then by Andrunachievich's Lemma, $M^3 \subset N$, hence *M* is nilpotent. We can assume that $M^2 = 0$. Then $(I + M)^2 = 0$ and $I \subset_{\neq} I + M$, a contradiction. \Box

Theorem 3.5. Let *R* be a compact nilpotent ring and $w(R) > \aleph_0$. Then for every cardinal number $\mathfrak{m}, \aleph_0 \leq \mathfrak{m} \leq w(R)$ there exists a closed ideal *I* such that $w(I) = \mathfrak{m}$.

Proof. Induction on the index *n* of nilpotence. For n = 2, the result follows from [6]. Assume that the assertion was proved for each nilpotent ring of index of nilpotence $\leq n$ and let *R* be a compact nilpotent ring of index of nilpotence n + 1. Then $cl(R^n) \subset Ann(R)$. If $w(cl(R^n)) = \mathfrak{m}$, then every subgroup of $cl(R^n)$ is an ideal of *R* and we can take a closed subgroup of $cl(R^n)$ of weight \mathfrak{m} . If $w(cl(R^n)) < \mathfrak{m}$, then $w(R/cl(R^n)) = w(R)$. By the assumption we can find a closed ideal l' of weight \mathfrak{m} . Denote by $q: R \to R/cl(R^n)$ the canonical homomorphism. Then $w(I) = \mathfrak{m}$, where $I = q^{-1}(I')$. \Box

Lemma 3.6. Let \mathfrak{M} be the variety of associative rings defined by the identities $2x = 0 = x^2$. Then \mathfrak{M} has no identities of the form $x_{n+1}f(x_1, \ldots, x_n) = 0$, where $f(x_1, \ldots, x_n) = 0$ is not an identity on \mathfrak{M} .

Proof. Let $X = \{x_i: i \in \mathbb{N}\}$ and I be the ideal of the ring $R = \mathbb{F}_2[X]$ of polynomials generated by X. Let K be the ideal of R generated by the set $\{x_i^2: i \in \mathbb{N}\}$. Then I/K is the free ring in the variety \mathfrak{M} with $y_i = x_i + K$, $i \in \mathbb{N}$, as free generators. Since $y_{n+1}f(y_1, \ldots, y_n) \neq 0$, the proof is finished. \Box

Example 3.1. A compact nilring having no infinite metrizable nilpotent ideals.

Let *X* be an arbitrary set of cardinality $> 2^{\aleph_0}$ and let \mathfrak{X} be the family of all finite nonempty subsets of *X*. Let F(X) be the free ring over *X* in the variety \mathfrak{M} of associative rings given by identities $2x = 0 = x^2$.

Denote for each $Y \in \mathfrak{X}$ by F(Y) the subring of F(X) generated by Y. Obviously, every ring in \mathfrak{M} is commutative and F(Y) is the free ring in \mathfrak{M} over Y. Consider the family $\{F(Y)\}_{Y \in \mathfrak{X}}$ as an inverse system of (finite) rings as follows: If $Y_1 \subset Y_2$ and $Y_1, Y_2 \in \mathfrak{X}$, then $p_{Y_2,Y_1} : F(Y_2) \to F(Y_1)$ maps y in y for all $y \in Y_1$, and all y to 0 for all $y \in Y_2 \setminus Y_1$.

Let $L = \lim_{t \to \infty} F(Y)$ be the inverse limit. We claim that L has the needed properties. Denote by p_Y , where $Y \in \mathfrak{X}$ the projection of L onto F(Y).

It suffices to show that the ideal *Ll* is nonmetrizable for every $0 \neq l \in L$. Since $l \neq 0$, there exists $Y \in \mathfrak{X}$ such that $p_Y(l) \neq 0$. That means that $p_Y(l) = f(x_1, \ldots, x_n)$, where $Y = \{x_1, \ldots, x_n\}$. Let $y, z \in X \setminus Y$, $y \neq z$. Set $U = Y \cup \{y\}$, $V = Y \cup \{z\}$, and $W = Y \cup \{y, z\}$. Then $p_U(l) = f(x_1, \ldots, x_n) + yg(x_1, \ldots, x_n)$, $p_V(l) = f(x_1, \ldots, x_n) + zh(x_1, \ldots, x_n)$, and $p_W(l) = f(x_1, \ldots, x_n) + ys(x_1, \ldots, x_n)$, where $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n), h(x_1, \ldots, x_n), s(x_1, \ldots, x_n), t(x_1, \ldots, x_n), q(x_1, \ldots, x_n) \in F(Y)$. Download English Version:

https://daneshyari.com/en/article/4659028

Download Persian Version:

https://daneshyari.com/article/4659028

Daneshyari.com