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1. Introduction

Our paper is inspired by recent results of S. Hernandez, K.H. Hofmann, and S.A. Morris (see [6]). We extend the main
results of the paper [6] to locally compact associative rings. If R is a compact nilpotent ring of uncountable weight, then
for every cardinal number m, 8y < m < w(R) there exists a closed ideal I such that w(I) =m. Examples 3.1 and 3.2 show
that this theorem is not true for all compact rings. It is known that every infinite associative ring contains a commutative
infinite subring [9]. We give an independent proof of this result for compact rings. We will use freely the classical result
that every totally disconnected compact ring is profinite (see, e.g., [7,11]).

2. Notation and conventions

All rings are assumed associative not necessarily with identity. Topological rings and groups are assumed to be Hausdorff.
The Jacobson radical of a ring R is denoted by J(R). If R is a ring, then its annihilator Ann(R) is the ideal {x € R: xR =
Rx = 0}. The symbol Ry stands for the connected component of zero of a topological ring R. If X is a subset of a ring R,
then (X) means the subring of R generated by X.
3. Results

Recall [4, p. 596 and p. 601] that a subset X of a topological group G is called suitable if

(i) X topologically generates G.
(ii) The identity element 1 ¢ X and X is discrete and closed in G\ {1}.
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Furthermore, the generating rank of a compact group G is the minimal cardinal number X for which there is a suitable
set X of G such that card X = R. It is denoted by s(G).
We will need the following results [4, Theorem 12.11 and Proposition 12.28]:

Theorem 3.1. Every compact group G has a suitable set.
Theorem 3.2. If G is an infinite totally disconnected compact group, then
w(G) = max{Ro, s(G)}.
Theorem 3.3. If R is a compact infinite ring, then for every infinite cardinal m < w(R) there exists a closed subring S with w(S) =m.

Proof. We can consider without loss of generality that w(R) > Rg.

Let Ry be the connected component of R. By Kaplansky’s Theorem [7, Theorem 8], RRg = RoR = 0. If w(Rg) > m, then
we can find a closed subgroup of Ry of weight m, which automatically will be a subring. Therefore we can assume that
w(Rp) < m. Then w(R) = w(R/Rp). It suffices to find a closed subring S of R/Rg of weight m.

Therefore we can consider that R is totally disconnected. Let X be a suitable set of the additive group of R. Then
card(X) = w(R) > m. Let Y be a subset of X of cardinality m. The set Z of all nonzero finite products of elements of Y
has cardinality m. The closed subring S generated by Y, has the subset Z as a set of topological generators of its additive
subgroup and is suitable. It follows that w(S) =m. O

Theorem 3.4. Every infinite compact nilring R contains an infinite ideal I for which I = 0.

Proof. We can consider without loss of generality that R is totally disconnected.

Let I be a maximal ideal in the set of ideals with trivial multiplication. If I is infinite, the proof is finished. If I is finite,
then there exists an open ideal V such that V NI =0. By [12], R is a nilring of bounded degree. Then by the Lewitzki-
Herstein Theorem [10, p. 180], V contains a nonzero nilpotent ideal N. If M is the ideal of R generated by N, then by
Andrunachievich’s Lemma, M3 c N, hence M is nilpotent. We can assume that M2 = 0. Then (I + M)2 =0 and [ Cx I+ M,
a contradiction. O

Theorem 3.5. Let R be a compact nilpotent ring and w(R) > Rg. Then for every cardinal number m, 8¢ < m < w(R) there exists
a closed ideal I such that w(I) =m.

Proof. Induction on the index n of nilpotence. For n = 2, the result follows from [6]. Assume that the assertion was proved
for each nilpotent ring of index of nilpotence < n and let R be a compact nilpotent ring of index of nilpotence n + 1.
Then cl(R™) C Ann(R). If w(cl(R™)) =m, then every subgroup of cI(R") is an ideal of R and we can take a closed subgroup
of cl(R™) of weight m. If w(cl(R")) < m, then w(R/cl(R")) = w(R). By the assumption we can find a closed ideal I’ of
weight m. Denote by q: R — R/cl(R") the canonical homomorphism. Then w(I) =m, where I =q~'(I'). O

Lemma 3.6. Let 0t be the variety of associative rings defined by the identities 2x = 0 = x2. Then 9 has no identities of the form
Xn+1f(X1,...,xn) =0, where f(x1,...,xn) = 0is not an identity on 9.

Proof. Let X = {x;: i € N} and I be the ideal of the ring R = [F2[X] of polynomials generated by X. Let K be the ideal of R
generated by the set {x,.z: i € N}. Then I/K is the free ring in the variety 9t with y; =x; 4+ K, i € N, as free generators. Since
Yn+1f (Y1, ..., Yn) #0, the proof is finished. O

Example 3.1. A compact nilring having no infinite metrizable nilpotent ideals.

Let X be an arbitrary set of cardinality > 2% and let X be the family of all finite nonempty subsets of X. Let F(X) be
the free ring over X in the variety 9% of associative rings given by identities 2x = 0 = x2.

Denote for each Y € X by F(Y) the subring of F(X) generated by Y. Obviously, every ring in 91 is commutative and F(Y)
is the free ring in 9% over Y. Consider the family {F(Y)}y<x as an inverse system of (finite) rings as follows: If Y; C Y, and
Y1,Y2 € X, then py,y, : F(Y2) > F(Yy) maps yin y forall ye Yy, and all y to O for all y € Y5\ Y5.

Let L =limF(Y) be the inverse limit. We claim that L has the needed properties. Denote by py, where Y € X the
projection of L onto F(Y).

It suffices to show that the ideal LI is nonmetrizable for every 0 # [ € L. Since I # 0, there exists Y € X such that py(l) # 0.
That means that py(l) = f(x1,...,Xn), Wwhere Y ={x1,...,x,}. Let y,ze X\Y, y#z Set U=YU{y}, V=Y U{z},and W =
Y U{y,z}. Then py() = f(x1,...,%1) + ygX1,..., %), pv() = f(X1,...,xp) + zh(x1,...,X), and pw () = f(x1,..., %) +
Ys(X1,...,Xn) + zt(x1,...,Xn) + ¥zq(X1,...,Xn), Where f(x1,...,X%n),8(X1,...,%0), h(X1,...,Xn),S(X1, ..., Xn), t(X1, ..., Xn),
q(x1,...,Xp) € F(Y).
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