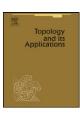


Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol



On paratopological groups *

Fucai Lin^a, Chuan Liu^{b,*}

- ^a Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou 363000, PR China
- ^b Department of Mathematics, Ohio University Zanesville Campus, Zanesville, OH 43701, USA

ARTICLE INFO

Article history:

Received 28 September 2011 Received in revised form 4 March 2012 Accepted 5 March 2012

MSC:

54E20

54E35

54H11

22A05

Keywords: Paratopological groups Submetrizable ω-Narrow Abelian groups Developable Quasi-developable k_{ω} -Paratopological groups H-closed paratopological groups Pseudocompact

ABSTRACT

In this paper, we firstly construct a Hausdorff non-submetrizable paratopological group G in which every point is a G_{δ} -set, which gives a negative answer to Arhangel'skii and Tkachenko's question [A.V. Arhangel'skiĭ, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press and World Sci., 2008]. We also prove that each firstcountable Abelian paratopological group is submetrizable. Moreover, we discuss developable paratopological groups and construct a non-metrizable, separable, Moore paratopological group. Further, we prove that a regular, countable, locally k_{ω} -paratopological group is a discrete topological group or contains a closed copy of S_{ω} . Finally, we discuss some properties on non-H-closed paratopological groups, and show that Sorgenfrey line is not H-closed, which gives a negative answer to Arhangel'skii and Tkachenko's question [A.V. Arhangel'skiĭ, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press and World Sci., 2008]. Some questions are posed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A semitopological group G is a group G with a topology such that the product map of $G \times G$ into G is separately continuous. A paratopological group G is a group G with a topology such that the product map of $G \times G$ into G is jointly continuous. If G is a paratopological group and the inverse operation of G is continuous, then G is called a topological group. However, there exists a paratopological group which is not a topological group; Sorgenfrey line [16, Example 1.2.2] is such an example. Paratopological groups were discussed and many results have been obtained [6-8,14,19,21-23].

Proposition 1.1. ([28]) For a group with topology (G, τ) the following conditions are equivalent:

- (1) *G* is a paratopological group.
- (2) The following Pontrjagin conditions for basis $\mathcal{B} = \mathcal{B}_{\tau}$ of the neutral element e of G are satisfied.

E-mail addresses: linfucai2008@yahoo.com.cn (F. Lin), liuc1@ohio.edu (C. Liu).

The first author is supported by the NSFC (Nos. 10971185, 10971186) and the Natural Science Foundation of Fujian Province (No. 2011]05013) of China.

Corresponding author.

- (a) $(\forall U, V \in \mathcal{B}) (\exists W \in \mathcal{B}) : W \subset U \cap V;$
- (b) $(\forall U \in \mathcal{B}) (\exists V \in \mathcal{B}): V^2 \subset U;$
- (c) $(\forall U \in \mathcal{B}) \ (\forall x \in U) \ (\exists V \in \mathcal{B}): Vx \subset U$;
- (d) $(\forall U \in \mathcal{B}) \ (\forall x \in G) \ (\exists V \in \mathcal{B}): xVx^{-1} \subset U.$

The paratopological group G is Hausdorff if and only if

(e) $\bigcap \{UU^{-1}: U \in \mathcal{B}\} = \{e\}.$

The paratopological group *G* is a topological group if and only if

(f) $(\forall U \in \mathcal{B}) (\exists V \in \mathcal{B})$: $V^{-1} \subset U$.

In this paper, we mainly discuss the following questions.

Question 1.2. ([8, Open problem 3.3.1]) Suppose that G is a Hausdorff (regular) paratopological group in which every point is a G_{δ} -set. Is G submetrizable?

Question 1.3. ([8, Open problem 5.7.2]) Let G be a regular first-countable ω -narrow paratopological group. Is G submetrizable?

Question 1.4. ([5, Problem 20]) Is every regular first-countable (Abelian) paratopological group submetrizable?

Question 1.5. ([5, Problem 22]) Is it true that every regular first-countable (Abelian) paratopological group G has a zero-set diagonal¹?

Question 1.6. ([5, Problem 21]) Is every regular first-countable (Abelian) paratopological group Dieudonné complete?

Question 1.7. ([8, Open problem 3.4.3]) Let G be a regular ω -narrow first-countable paratopological group. Does there exist a continuous isomorphism of G onto a regular (Hausdorff) second-countable paratopological group?

Question 1.8. ([22]) Is a regular symmetrizable paratopological group metrizable?

Question 1.9. ([8, Open problem 5.7.5]) In every paratopological group, which is Moore space, metrizable?

Question 1.10. ([8, Open problem 3.6.5]) Must the Sorgenfrey line S be closed in every Hausdorff paratopological group containing it as a paratopological subgroup?

We shall give negative answers to Questions 1.2, 1.8, 1.9, and 1.10, and give a partial answer to Question 1.3. Moreover, we shall also give affirmative answers to Questions 1.4, 1.5, 1.6 and 1.7 when the group G is Abelian.

2. Preliminaries

Definition 2.1. Let $\mathscr{P} = \bigcup_{x \in X} \mathscr{P}_X$ be a cover of a space X such that for each $x \in X$, (a) if $U, V \in \mathscr{P}_X$, then $W \subset U \cap V$ for some $W \in \mathscr{P}_X$; (b) the family \mathscr{P}_X is a network of X in X, i.e., $X \in \bigcap \mathscr{P}_X$, and if $X \in U$ with $X \in U$ open in $X \in U$ for some $X \in U$ some $X \in U$ is a network of $X \in U$ for some $X \in U$ is a network of $X \in U$ for some $X \in U$ is a network of $X \in U$ for some $X \in U$ for some $X \in U$ for $X \in U$ for some $X \in U$ for $X \in U$ fo

The family $\mathscr P$ is called a *weak base* for X [1] if, for every $A \subset X$, the set A is open in X whenever for each $x \in A$ there exists $P \in \mathscr P_X$ such that $P \subset A$. The space X is *weakly first-countable* if $\mathscr P_X$ is countable for each $X \in X$.

Definition 2.2.

- (1) A space X is called an S_{ω} -space if X is obtained by identifying all the limit points from a topological sum of countably many convergent sequences;
- (2) A space X is called an S_2 -space (*Arens' space*) if $X = \{\infty\} \cup \{x_n: n \in \mathbb{N}\} \cup \{x_n(m): m, n \in \mathbb{N}\}$ and the topology is defined as follows: Each $x_n(m)$ is isolated; a basic neighborhood of x_n is $\{x_n\} \cup \{x_n(m): m > k\}$, for some $k \in \mathbb{N}\}$; a basic neighborhood of ∞ is $\{\infty\} \cup \{\bigcup \{V_n: n > k \text{ for some } k \in \mathbb{N}\}\}$, where V_n is a neighborhood of x_n .

¹ We say that a space X has a zero-set diagonal if the diagonal in $X \times X$ is a zero-set of some continuous real-valued function on $X \times X$.

Download English Version:

https://daneshyari.com/en/article/4659257

Download Persian Version:

https://daneshyari.com/article/4659257

Daneshyari.com