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We consider the pairing problem of classifying spaces of compact Lie groups for monomorphisms. Recall in general that
for a map f:Y — Z, the set of the homotopy classes of axes, denoted by f+(X, Z), consists of all homotopy classes of maps
o : X — Z such that there is a map (called a pairing) u:X x Y — Z with restrictions (axes) u|x >~ « and uly =~ f. In the
case of classifying spaces [10], we have the following commutative diagram:

BL
f

BK x BL-*—~BG

=

BK

Here we denote o € f1(BK,BG). Let f = Bi where i:L — G is a monomorphism of Lie groups. We will obtain a
sufficient condition for (Bi)*(BK, BG) =0 and calculate some pairings.

The first author has studied the pairing problem of classifying spaces for weak epimorphisms. By Theorem 1 of [10], we
see that if the restriction map BL — BG is a weak epimorphism, then the restriction on BK factors through the classifying
spaces of the center of the compact Lie group G. A generalization for p-compact groups can be found in [11]. A p-compact
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group [6] and [17], is a loop space X such that X is IF,-finite and that its classifying space BX is [F,-complete. The p-
completion of a compact Lie group G is a p-compact group if 779G is a p-group. It is worth to recall here a group theoretical
analog. Suppose p:L — G and «:K — G are homomorphisms. If there is a pairing homomorphism ©:K x L — G with
M|k =o and w@|p = p, then the image o(K) must be contained in the centralizer of p(L) in G, denoted by Cg(p).

Theorem 1. Suppose that K is a compact Lie group, and that a connected compact Lie group H is a semi-simple subgroup of a connected
compact Lie group G with rank(H) = rank(G). Let i : H < G be the inclusion. If @ € (Bi)*(BK, BG), then the following hold:

(1) Themap « : BK — BG factors through Bro K up to homotopy under the map induced by the projection q : K — moK. In particular,
if K is connected, the map « is null homotopic.

(2) There is a homomorphism p : oK — G such that o >~ Bp o Bq, and the image of the homomorphism p (7o K) is contained in the
centralizer C¢ (H).

Theorem 2. For the inclusions i : SU(m) < SU(n) and j : Sp(m) < Sp(n) with m < n, we have the following:

(1) (Bi)L(BSU(k), BSU(n)) = [BSU(k), BSU(n — m)].
(2) (Bj)L(BSp(k), BSp(n)) = [BSp(k), BSp(n —m)].

A result of [12] shows that for the inclusion i:SU(n) — U(n), if a connected compact Lie group K is semi-simple, then
(Bi)L(BK, BU(n)) = 0. Similar results for other classical Lie groups are obtained in [15].

Theorem 3. For the inclusion i : SO(n) — SU(n) withn > 3, if G is a connected compact Lie group, then any map in (Bi)*(BG, BSU(n))
is null homotopic:

(Bi)*(BG,BSU(n)) = 0.

We will prove the p-completed version of this result. So Theorem 3 is its easy consequence.
Some of the results in this paper first appeared in the third author’s master thesis.

1. Ranks of pairing maps

We will prove Theorem 1 in this section. To do so, we need a few basic results, mostly something about ranks of
admissible maps.

Lemma 1.1. Let G be semi-simple. For any infinite order element « of a maximal torus Tg, there is an element )\ contained in the
normalizer NT¢ such that AaA~ 1o~ is not contained in the center Z(G).

Proof. Since G is semi-simple, the order of Z(G) is finite. Let |Z(G)| =n. Now suppose AaA~'aa~! € Z(G) for any A € NTg.
Then we would see Aax~'a~! = ¢ for some ¢ € Z(G), and hence ra"A~! = (Aawr™1)" = "™ = ™. This means that o"
is fixed by the action of the Weyl group W (G) = NT¢/T¢. Consequently the infinite set {(a™)* | k € Z} could be contained
in the set Tgt/(c)_ This is, however, a finite set, since TGW(G)/Z(G) is an elementary abelian 2-group [7, Remark 1.5]. This
contradiction completes the proof. O

Here we first recall the kernel of a map f:BL — (BG)S [9,5], and [16], where Xﬁ denotes the p-completion of a space X.
Let T (or T) be a maximal torus of the Lie group L. Suppose N,T denotes the inverse image in the normalizer of a maximal
torus T of a p-Sylow subgroup W of the Weyl group of L. We define a subgroup Np~T of NpT as follows:

T NTT I
Pz/p> NpT W,

Here @Z/p>™ C T is the subgroup of elements whose order is a power of p. The kernel of a map f:BL — (BG)Q is
defined in [9, §1] as follows:

Ker f ={x e NpoT | flpw = 0}.

Here (x) denotes the subgroup of Np~T generated by x. We note that Ker f is a group.

Next we recall subgroups related to the center of connected compact Lie groups, [9]. Let Z(L) denote the center of L and
let W(L) denote its Weyl group. If L is a simply-connected simple Lie group other than the exceptional Lie group G;, we
define
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