ELSEVIER

Contents lists available at SciVerse ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Pairings and monomorphisms of classifying spaces

Kenshi Ishiguro^{a,*}, Shotaro Kudo^a, Tomohiro Nakano^b

^a Dept. of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan

^b Wajiro junior high school, Higashi-ku, Fukuoka 814-0201, Japan

ARTICLE INFO

Article history: Received 22 May 2012 Received in revised form 18 October 2012 Accepted 18 October 2012

MSC: 55R37 55R35 55P60

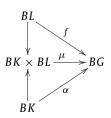
Keywords: Classifying space Lie group p-Compact group p-Completion K-theory Admissible map

ABSTRACT

We consider the maps between classifying spaces of compact Lie groups of the form $BK \times BL \rightarrow BG$. If the restriction map $BL \rightarrow BG$ is a weak epimorphism, then the restriction on BK is known to factor through the classifying spaces of the center of the compact Lie group G. Suppose H is a semi-simple subgroup of a connected compact Lie group G with rank $(H) = \operatorname{rank}(G)$. Replacing the weak epimorphism $BL \rightarrow BG$ by the map $BH \rightarrow BG$, analogous results are obtained. We also consider some monomorphisms of classifying spaces of compact Lie groups, such as $BSO(n) \rightarrow BSU(n)$. Our proof will make use of admissible maps.

© 2012 Elsevier B.V. All rights reserved.

We consider the pairing problem of classifying spaces of compact Lie groups for monomorphisms. Recall in general that for a map $f: Y \to Z$, the set of the homotopy classes of axes, denoted by $f^{\perp}(X, Z)$, consists of all homotopy classes of maps $\alpha: X \to Z$ such that there is a map (called *a pairing*) $\mu: X \times Y \to Z$ with restrictions (*axes*) $\mu|_X \simeq \alpha$ and $\mu|_Y \simeq f$. In the case of classifying spaces [10], we have the following commutative diagram:



Here we denote $\alpha \in f^{\perp}(BK, BG)$. Let f = Bi where $i: L \to G$ is a monomorphism of Lie groups. We will obtain a sufficient condition for $(Bi)^{\perp}(BK, BG) = 0$ and calculate some pairings.

The first author has studied the pairing problem of classifying spaces for weak epimorphisms. By Theorem 1 of [10], we see that if the restriction map $BL \rightarrow BG$ is a weak epimorphism, then the restriction on BK factors through the classifying spaces of the center of the compact Lie group *G*. A generalization for *p*-compact groups can be found in [11]. A *p*-compact

* Corresponding author.

E-mail addresses: kenshi@cis.fukuoka-u.ac.jp (K. Ishiguro), sd100501@cis.fukuoka-u.ac.jp (S. Kudo).

^{0166-8641/\$ –} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.topol.2012.10.018

group [6] and [17], is a loop space *X* such that *X* is \mathbb{F}_p -finite and that its classifying space *BX* is \mathbb{F}_p -complete. The *p*-completion of a compact Lie group *G* is a *p*-compact group if $\pi_0 G$ is a *p*-group. It is worth to recall here a group theoretical analog. Suppose $\rho: L \to G$ and $\alpha: K \to G$ are homomorphisms. If there is a *pairing* homomorphism $\mu: K \times L \to G$ with $\mu|_K = \alpha$ and $\mu|_L = \rho$, then the image $\alpha(K)$ must be contained in the centralizer of $\rho(L)$ in *G*, denoted by $C_G(\rho)$.

Theorem 1. Suppose that K is a compact Lie group, and that a connected compact Lie group H is a semi-simple subgroup of a connected compact Lie group G with rank(H) = rank(G). Let $i : H \hookrightarrow G$ be the inclusion. If $\alpha \in (Bi)^{\perp}(BK, BG)$, then the following hold:

- (1) The map α : BK \rightarrow BG factors through $B\pi_0 K$ up to homotopy under the map induced by the projection q : $K \rightarrow \pi_0 K$. In particular, if K is connected, the map α is null homotopic.
- (2) There is a homomorphism $\rho: \pi_0 K \to G$ such that $\alpha \simeq B\rho \circ Bq$, and the image of the homomorphism $\rho(\pi_0 K)$ is contained in the centralizer $C_G(H)$.

Theorem 2. For the inclusions $i: SU(m) \hookrightarrow SU(n)$ and $j: Sp(m) \hookrightarrow Sp(n)$ with $m \leq n$, we have the following:

- (1) $(Bi)^{\perp}(BSU(k), BSU(n)) = [BSU(k), BSU(n-m)].$
- (2) $(Bj)^{\perp}(BSp(k), BSp(n)) = [BSp(k), BSp(n-m)].$

A result of [12] shows that for the inclusion $i: SU(n) \to U(n)$, if a connected compact Lie group K is semi-simple, then $(Bi)^{\perp}(BK, BU(n)) = 0$. Similar results for other classical Lie groups are obtained in [15].

Theorem 3. For the inclusion $i: SO(n) \rightarrow SU(n)$ with $n \ge 3$, if G is a connected compact Lie group, then any map in $(Bi)^{\perp}(BG, BSU(n))$ is null homotopic:

 $(Bi)^{\perp}(BG, BSU(n)) = 0.$

We will prove the *p*-completed version of this result. So Theorem 3 is its easy consequence. Some of the results in this paper first appeared in the third author's master thesis.

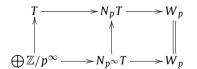
1. Ranks of pairing maps

We will prove Theorem 1 in this section. To do so, we need a few basic results, mostly something about ranks of admissible maps.

Lemma 1.1. Let G be semi-simple. For any infinite order element α of a maximal torus T_G , there is an element λ contained in the normalizer NT_G such that $\lambda \alpha \lambda^{-1} \alpha^{-1}$ is not contained in the center Z(G).

Proof. Since *G* is semi-simple, the order of *Z*(*G*) is finite. Let |Z(G)| = n. Now suppose $\lambda \alpha \lambda^{-1} \alpha^{-1} \in Z(G)$ for any $\lambda \in NT_G$. Then we would see $\lambda \alpha \lambda^{-1} \alpha^{-1} = \zeta$ for some $\zeta \in Z(G)$, and hence $\lambda \alpha^n \lambda^{-1} = (\lambda \alpha \lambda^{-1})^n = \zeta^n \alpha^n = \alpha^n$. This means that α^n is fixed by the action of the Weyl group $W(G) = NT_G/T_G$. Consequently the infinite set $\{(\alpha^n)^k | k \in \mathbb{Z}\}$ could be contained in the set $T_G^{W(G)}$. This is, however, a finite set, since $T_G^{W(G)}/Z(G)$ is an elementary abelian 2-group [7, Remark 1.5]. This contradiction completes the proof. \Box

Here we first recall the *kernel* of a map $f : BL \to (BG)_p^{\wedge}$ [9,5], and [16], where X_p^{\wedge} denotes the *p*-completion of a space *X*. Let *T* (or T_L) be a maximal torus of the Lie group *L*. Suppose N_pT denotes the inverse image in the normalizer of a maximal torus *T* of a *p*-Sylow subgroup W_p of the Weyl group of *L*. We define a subgroup $N_p^{\infty}T$ of N_pT as follows:



Here $\bigoplus \mathbb{Z}/p^{\infty} \subset T$ is the subgroup of elements whose order is a power of p. The kernel of a map $f: BL \to (BG)_p^{\wedge}$ is defined in [9, §1] as follows:

$$\operatorname{Ker} f = \{ x \in N_{p^{\infty}}T \mid f|_{B(x)} \simeq 0 \}.$$

Here $\langle x \rangle$ denotes the subgroup of $N_{p^{\infty}}T$ generated by *x*. We note that Ker *f* is a group.

Next we recall subgroups related to the center of connected compact Lie groups, [9]. Let Z(L) denote the center of L and let W(L) denote its Weyl group. If L is a simply-connected simple Lie group other than the exceptional Lie group G_2 , we define

Download English Version:

https://daneshyari.com/en/article/4659279

Download Persian Version:

https://daneshyari.com/article/4659279

Daneshyari.com