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The aim of the paper is to investigate the relation between inverse limit of branched
manifolds and codimension zero laminations. We give necessary and sufficient conditions
for such an inverse limit to be a lamination. We also show that codimension zero
laminations are inverse limits of branched manifolds.
The inverse limit structure allows us to show that equicontinuous codimension zero
laminations preserves a distance function on transversals.
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1. Introduction

Consider the circle S1 = {z ∈C | |z| = 1} and the cover of degree 2 of it p2(z) = z2. Define the inverse limit

S2 = lim←−
(
S1, p2

) =
{
(zk) ∈

∏
k�0

S1
∣∣∣ z2

k = zk−1

}
.

This space has a natural foliated structure given by the flow Φt(zk) = (e2π it/2k
zk). The set X = {(zk) ∈ S2 | z0 = 1} is a

complete transversal for the flow homeomorphic to the Cantor set. This space is called solenoid. This construction can be
generalized replacing S1 and p2 by a sequence of compact n-manifolds and submersions between them. The spaces obtained
this way are compact laminations with 0-dimensional transversals.

This construction appears naturally in the study of dynamical systems. In [17,18] R.F. Williams proves that an expanding
attractor of a diffeomorphism of a manifold is homeomorphic to the inverse limit

S
f←− S

f←− S · · ·
where f is a surjective immersion of a branched manifold S on itself. A branched manifold is, roughly speaking, a CW-
complex with tangent space at each point.

After their introduction by R.F. Williams, branched manifolds and their limits have been extensively used in the study of
dynamical systems and foliations. For example W. Thurston uses train tracks (1-dimensional branched manifolds) in geodesic
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laminations on hyperbolic surfaces [15]. Later, J. Anderson and I. Putnam show [2] that substitution tiling spaces are inverse
limits of a CW-complex as in the case of R.F. Williams. J. Bellisard, R. Benedetti and J.-M. Gambaudo [3], F. Gähler [9] and
L. Sadun [14] independently extended this result to any tiling, showing that they are inverse limits of branched manifolds.
In this case, the projective system has different branched surfaces at each level. With a similar scheme as in [3] R. Benedetti
and J.-M. Gambaudo has extended in [4] the previous result to G-solenoids (free actions of a Lie group G with transverse
Cantor structure).

F. Alcalde Cuesta, M. Macho Stadler and the author prove in [1] that any compact without holonomy minimal lamination
of codimension zero is an inverse limit, generalizing all previous results.

In this article, we thoroughly explore the relation between inverse limits of branched manifolds and laminations with
0-dimensional transverse structure. Let us start considering the following example. Take the eight figure

K = S1 ∧1 S
1 = S1 × {1,2}

(1,1) ∼ (1,2)
,

that is, the two copies of the circle glued by the 1. For each copy of S1 we have the degree two covering p2, so we can
define P2([z, i]) = [z2, i], where [z, i] ∈ K . Let X be the inverse limit lim←−(K , P2). It is easy to see that X is homeomorphic to

S2 ∧(1) S2, i.e., two copies of the solenoid glued by the sequence (1) ∈ S2. It is clear that it is not a lamination. The problem
is that P2 does not iron out the branching in each step, collapsing the branches at branching points to one single disk. The
kind of maps doing that are called flattening [3].

We have three main theorems in the paper. Firstly, we show that this is a necessary and sufficient condition on an
inverse systems to obtain a lamination as it limit:

Theorem 4.3. Fix a projective system (Bk, fk) where Bk are branched n-manifolds and fk cellular maps, both of class Cr . The inverse
limit B∞ of the system is a codimension zero lamination of dimension n and class Cr if and only if the systems is flattening.

Secondly, thinking in laminations as tiling spaces [1] we can adapt the constructions for tilings [9,14] to obtain a result
in the other direction: from laminations to systems of branched manifolds. This theorem extends [1] to any lamination of
codimension zero:

Theorem 5.8. Any codimension zero lamination (M,L) is homeomorphic to an inverse limit lim←−(Sk, fk) of branched manifolds Sk and

cellular maps fk : Sk → Sk−1 .

Finally, the inverse limit structure can give information of the dynamics of the space. M.C. McCord [13] and recently
A. Clark and S. Hurder [7] study an important class of solenoidal spaces, those given by real manifolds and regular covering
maps as bounding maps. With this structure we can conclude that:

Theorem 6.3. An equicontinuous lamination of codimension zero preserves a transverse metric.

2. Branched manifolds

Let Dn denote the closed n-dimensional unit disk. A sector is the, eventually empty, interior of the intersection of a
(finite) family of half-spaces through the origin. Fix a finite family of sectors S , and a finite directed tree T with a map
s : V T → S where V T is the vertex set of T .

Now define a local branched model U T as the quotient set of Dn × V T by the relation generated by

(x, v) ∼ (
x, v ′) ⇐⇒ the edge v → v ′ exists in T and x ∈Dn \ s(v).

The quotient D v ⊆ U T of each set Dn × {v} is called a smooth disks. There is a natural map ΠT : U T → Dn given by the
quotient of the first coordinate projection pr1 : (x, v) 
→ x, which is a homeomorphism restricted to each smooth disk.

Definition 2.1. A branched manifold of class Cr of dimension n is a Polish space S endowed with an atlas of closed disks {Ui}
homeomorphic to local branched models of dimension n such that there is a cocycle of Cr -diffeomorphisms {αi j} between
open sets of Dn fulfilling Πi ◦ αi j = Π j , where Πi denotes the natural map of the local models.

Remark 2.2. Definition 2.1 is not the classical one [18]. In our setting the branching behavior is quite simple as we have
locally finite branching. This is not true with the classical definition.

Following [18], there is a natural notion of differentiable map: a map f : S → S ′ between two branched manifolds of
class at least r � 1 is of class Cr if the local map
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