ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Generating varieties, Bott periodicity and instantons

Daisuke Kishimoto

Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

ARTICLE INFO

Article history: Received 23 June 2009 Received in revised form 12 November 2009 Accepted 12 November 2009

MSC: 81T13 55R45

Keywords: Instanton Bott periodicity Generating variety Commutator

ABSTRACT

Let G be the classical group and let $\mathcal{M}_k(G)$ be the based moduli space of G-instantons on S^4 with instanton number k. It is known that $\mathcal{M}_k(G)$ yields real and symplectic Bott periodicity, however an explicit geometric description of the homotopy equivalence has not been known. We consider certain orbit spaces in $\mathcal{M}_k(G)$ and show that the restriction of the inclusion of $\mathcal{M}_k(G)$ into the moduli space of connections, which, in turn, is explicitly described by the commutator map of G. We prove this restriction satisfies a triple loop space version of the generating variety argument of Bott (1958) [5], and it also gives real and symplectic Bott periodicity. This also gives a new proof of real and symplectic Bott periodicity.

© 2009 Published by Elsevier B.V.

1. Introduction

Let G be a compact connected simple Lie group. Then there is an isomorphism $\pi_3(G) \cong \pi_4(BG) \cong \mathbb{Z}$. We will fix an isomorphism $\pi_3(G) \cong \mathbb{Z}$. Then principal G-bundles over S^4 are classified by $\mathbb{Z} = \pi_3(G)$, and denote by P_k the principal G-bundle over S^4 corresponding to $k \in \mathbb{Z}$. Let $C_k(G)$ be the based moduli space of connections on P_k . Then we have a natural homotopy equivalence

$$C_k(G) \simeq \Omega_k^3 G$$

where Ω_k^3G stands for the path component of Ω^3G corresponding to $k \in \mathbb{Z} = \pi_3(G)$. We will identify $C_k(G)$ with Ω_k^3G by this homotopy equivalence. Let $\mathcal{M}_k(G)$ be the based moduli space of instantons on P_k . Then we have a map

$$\theta_k: \mathcal{M}_k(G) \to \Omega_0^3 G$$

defined by the composite of the inclusion $\mathcal{M}_k(G) \to \Omega_k^3(G) \simeq \mathcal{C}_k(G)$ and the homotopy equivalence $\Omega_k^3 G \simeq \Omega_0 G$, the shift by $-k \in \mathbb{Z} = \pi_3(G)$.

The topology of the map θ_k was first studied by Atiyah and Jones [3], and, later, it was proved by Boyer, Hurtubise, Mann and Milgram [8], Kirwan [14] and Tian [18] that the map θ_k is a homotopy equivalence in a range, which is known as the Atiyah–Jones theorem. As a consequence of this result, Tian [18] showed that the colimit of the map θ_k yields real and symplectic Bott periodicity. However, an explicit geometric description of the homotopy equivalence is not known while Bott periodicity was given by a map explicitly defined by the commutator maps of the classical groups [6]. In [9], it is shown that the map θ_k has some relation with the commutator map of G when K when K when K and K are the studies of the classical groups [6]. In [9], it is shown that the map K has some relation with the commutator map of K when K when K and K are the studies of the classical groups [6].

the commutator maps to study the topology of loop spaces of Lie groups. Exploiting the above result of [9] in connection with the classical result of Bott [5], Kamiyama [12] studied a triple loop space analogue of generating varieties of Bott [5].

We will give a mild generalization of the above result of [9] for arbitrary k. Using this, we prove triple loop space version of the generating variety argument [5] in a sense somewhat different from [12], and also prove Bott periodicity. This yields a new proof of real and symplectic Bott periodicity. We will give applications of this result to the homotopy types of $\mathcal{M}_k(G)$.

2. Subgroups of classical groups isomorphic with SU(2)

Let G be a compact, connected, simple Lie group with a fixed isomorphism $\pi_3(G) \cong \mathbb{Z}$. Note that G acts on $\mathcal{M}_k(G)$ via the action of the basepoint free gauge group of P_k on $\mathcal{M}_k(G)$. As is shown in [9], there is an orbit of this action for k=1 such that the restriction of $\theta_1: \mathcal{M}_1(G) \to \Omega_0^3 G$ is presented by the commutator map of G. By putting additional assumption, we can prove this for arbitrary k by essentially the same way in [9] as follows.

Lemma 1. Suppose that there exists a subgroup H of G isomorphic to $SU(2) \approx S^3$ such that the inclusion $\iota: H \hookrightarrow G$ represents $k \in \mathbb{Z} = \pi_3(G)$. Then there exists $\omega \in \mathcal{M}_k(G)$ satisfying:

- (1) The orbit space $G \cdot \omega$ is homeomorphic with G/C(H), where C(H) stands for the centralizer of H.
- (2) Let Γ denote the composite:

$$G/C(H) \approx G \cdot \omega \hookrightarrow \mathcal{M}_k(G) \xrightarrow{\theta_k} \Omega_0^3 G.$$

Then we have

$$\Gamma(gC(H)) \simeq g\iota(h)g^{-1}\iota(h)^{-1}$$

for $g \in G$, $h \in H$.

Proof. Let α be an asymptotically flat connection on P_k . We regard S^4 as $\mathbb{R}^4 \cup \{\infty\}$. Recall from [3] that the homotopy equivalence $C_k(G) \xrightarrow{\simeq} \Omega_0^3 G$ takes $\alpha \in \mathcal{M}_k(G)$ into its 'pure gauge' $\hat{\alpha}: S^3 \to G$ at $\infty \in S^4$ normalized as $\hat{\alpha}(*) = e$, where * and e are the basepoint of S^3 and unity of G, respectively. (See [3].) The action of the basepoint free gauge group of P_k is locally the conjugation by G. Then the map θ_k is G-equivariant under the action of G on $\Omega_0^3 G$ given by $g \cdot \lambda(x) = g\lambda(x)g^{-1}$ for $g \in G$, $\lambda \in \Omega_0^3 G$, $x \in S^3$.

Let P be a principal SU(2)-bundle over S^4 represented by $1 \in \mathbb{Z} \cong \pi_3(SU(2))$. In [2], an asymptotically flat instanton ϖ whose pure gauge represents $1 \in \mathbb{Z} \cong \pi_3(SU(3))$. Then the proof is completed by putting ω to be the push forward of ϖ by the inclusion $\iota: H \cong SU(2) \to G$. \square

The original form of Bott periodicity [6] is given by such a map Γ in Lemma 1 where $SU(2) \approx S^3$ is replaced with $U(1) \approx S^1$. On the other hand, there is known a deep relation between $\mathcal{M}_k(G)$ and Bott periodicity as in [14,17,18]. Then we expect the map Γ in Lemma 1 may yield real and symplectic Bott periodicity which has period 4. Also we expect G/C(H) and Γ in Lemma 1 may yield a 3-fold loop analogue of a generating variety for a loop space of a Lie group, which is already studied by Kamiyama [12] in a slightly different sense, that is, algebras over the Kudo–Araki operations. Then we introduce a family of subgroups of the classical groups which are isomorphic with SU(2) by which we can prove the above argument.

Hereafter, we put $(\mathbf{G}, \mathbf{H}, d) = (\operatorname{Sp}, \operatorname{O}, 1)$, $(\operatorname{SU}, \operatorname{U}, 2)$, $(\operatorname{SO}, \operatorname{Sp}, 4)$. We will define a family of subgroups $S_{k,l}(\mathbf{G})$ of $\mathbf{G}(dk+l)$ indexed by positive integers k and non-negative integers l. Since the Lie group $\mathbf{G}(dk+l)$ must be simple, we will assume dk+l>4 when $\mathbf{G}=\operatorname{SO}$.

Let $\mathbf{c}: O(n) \to U(n)$, $\mathbf{q}: U(n) \to Sp(n)$, $\mathbf{c}': Sp(n) \to SU(2n)$, and $\mathbf{r}: U(n) \to O(2n)$ be the canonical inclusions. In order to make things clear, we write the maps \mathbf{c}' and \mathbf{r} explicitly as follows. Let $M_n(\mathbb{K})$ be the set of all square matrices of order n over a field \mathbb{K} . For $A = (a_{ij})$, $B = (b_{ij}) \in M_n(\mathbb{C})$ such that $A + B\mathbf{j} \in Sp(n)$, we put

$$\mathbf{c}'(A+B\mathbf{j}) = (\mathbf{c}'(a_{ij}+b_{ij}\mathbf{j}))$$

where $\mathbf{c}'(a+\mathbf{j}b) = \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix}$ for $a,b \in \mathbb{C}$. We also put, for $C = (c_{ij}),\ D = (d_{ij}) \in M_n(\mathbb{R})$ such that $C + D\sqrt{-1} \in U(n)$,

$$\mathbf{r}(C + D\sqrt{-1}) = \left(\mathbf{r}(c_{ij} + d_{ij}\sqrt{-1})\right)$$

where $\mathbf{r}(c+d\sqrt{-1})=\binom{c-d}{dc}$ for $c,d\in\mathbb{R}$. We denote the matrix $\binom{A\ O}{O\ B}$ by $A\oplus B$. We consider the following family of subgroups of the classical groups isomorphic with $SU(2)\approx S^3$:

Download English Version:

https://daneshyari.com/en/article/4660385

Download Persian Version:

https://daneshyari.com/article/4660385

Daneshyari.com