
Topology and its Applications 157 (2010) 657–668

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Generating varieties, Bott periodicity and instantons

Daisuke Kishimoto

Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 June 2009
Received in revised form 12 November 2009
Accepted 12 November 2009

MSC:
81T13
55R45

Keywords:
Instanton
Bott periodicity
Generating variety
Commutator

Let G be the classical group and let Mk(G) be the based moduli space of G-instantons
on S4 with instanton number k. It is known that Mk(G) yields real and symplectic Bott
periodicity, however an explicit geometric description of the homotopy equivalence has not
been known. We consider certain orbit spaces in Mk(G) and show that the restriction of
the inclusion of Mk(G) into the moduli space of connections, which, in turn, is explicitly
described by the commutator map of G . We prove this restriction satisfies a triple loop
space version of the generating variety argument of Bott (1958) [5], and it also gives real
and symplectic Bott periodicity. This also gives a new proof of real and symplectic Bott
periodicity.

© 2009 Published by Elsevier B.V.

1. Introduction

Let G be a compact connected simple Lie group. Then there is an isomorphism π3(G) ∼= π4(BG) ∼= Z. We will fix
an isomorphism π3(G) ∼= Z. Then principal G-bundles over S4 are classified by Z = π3(G), and denote by Pk the prin-
cipal G-bundle over S4 corresponding to k ∈ Z. Let Ck(G) be the based moduli space of connections on Pk . Then we have
a natural homotopy equivalence

Ck(G) � Ω3
k G

where Ω3
k G stands for the path component of Ω3G corresponding to k ∈ Z = π3(G). We will identify Ck(G) with Ω3

k G by
this homotopy equivalence. Let Mk(G) be the based moduli space of instantons on Pk . Then we have a map

θk : Mk(G) → Ω3
0 G

defined by the composite of the inclusion Mk(G) → Ω3
k (G) � Ck(G) and the homotopy equivalence Ω3

k G � Ω0G , the shift
by −k ∈ Z = π3(G).

The topology of the map θk was first studied by Atiyah and Jones [3], and, later, it was proved by Boyer, Hurtubise,
Mann and Milgram [8], Kirwan [14] and Tian [18] that the map θk is a homotopy equivalence in a range, which is known
as the Atiyah–Jones theorem. As a consequence of this result, Tian [18] showed that the colimit of the map θk yields
real and symplectic Bott periodicity. However, an explicit geometric description of the homotopy equivalence is not known
while Bott periodicity was given by a map explicitly defined by the commutator maps of the classical groups [6]. In [9],
it is shown that the map θk has some relation with the commutator map of G when k = 1. Recall that Bott [5] also used
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the commutator maps to study the topology of loop spaces of Lie groups. Exploiting the above result of [9] in connec-
tion with the classical result of Bott [5], Kamiyama [12] studied a triple loop space analogue of generating varieties of
Bott [5].

We will give a mild generalization of the above result of [9] for arbitrary k. Using this, we prove triple loop space version
of the generating variety argument [5] in a sense somewhat different from [12], and also prove Bott periodicity. This yields a
new proof of real and symplectic Bott periodicity. We will give applications of this result to the homotopy types of Mk(G).

2. Subgroups of classical groups isomorphic with SU(2)

Let G be a compact, connected, simple Lie group with a fixed isomorphism π3(G) ∼= Z. Note that G acts on Mk(G) via
the action of the basepoint free gauge group of Pk on Mk(G). As is shown in [9], there is an orbit of this action for k = 1
such that the restriction of θ1 : M1(G) → Ω3

0 G is presented by the commutator map of G . By putting additional assumption,
we can prove this for arbitrary k by essentially the same way in [9] as follows.

Lemma 1. Suppose that there exists a subgroup H of G isomorphic to SU(2) ≈ S3 such that the inclusion ι : H ↪→ G represents
k ∈ Z = π3(G). Then there exists ω ∈ Mk(G) satisfying:

(1) The orbit space G · ω is homeomorphic with G/C(H), where C(H) stands for the centralizer of H.
(2) Let Γ denote the composite:

G/C(H) ≈ G · ω ↪→ Mk(G)
θk−→ Ω3

0 G.

Then we have

Γ
(

gC(H)
) � gι(h)g−1ι(h)−1

for g ∈ G, h ∈ H.

Proof. Let α be an asymptotically flat connection on Pk . We regard S4 as R
4 ∪ {∞}. Recall from [3] that the homotopy

equivalence Ck(G)
�−→ Ω3

0 G takes α ∈ Mk(G) into its ‘pure gauge’ α̂ : S3 → G at ∞ ∈ S4 normalized as α̂(∗) = e, where ∗
and e are the basepoint of S3 and unity of G , respectively. (See [3].) The action of the basepoint free gauge group of Pk is
locally the conjugation by G . Then the map θk is G-equivariant under the action of G on Ω3

0 G given by g · λ(x) = gλ(x)g−1

for g ∈ G , λ ∈ Ω3
0 G , x ∈ S3.

Let P be a principal SU(2)-bundle over S4 represented by 1 ∈ Z ∼= π3(SU(2)). In [2], an asymptotically flat instanton �
whose pure gauge represents 1 ∈ Z ∼= π3(SU(3)). Then the proof is completed by putting ω to be the push forward of � by
the inclusion ι : H ∼= SU(2) → G . �

The original form of Bott periodicity [6] is given by such a map Γ in Lemma 1 where SU(2) ≈ S3 is replaced with
U(1) ≈ S1. On the other hand, there is known a deep relation between Mk(G) and Bott periodicity as in [14,17,18]. Then
we expect the map Γ in Lemma 1 may yield real and symplectic Bott periodicity which has period 4. Also we expect
G/C(H) and Γ in Lemma 1 may yield a 3-fold loop analogue of a generating variety for a loop space of a Lie group, which
is already studied by Kamiyama [12] in a slightly different sense, that is, algebras over the Kudo–Araki operations. Then we
introduce a family of subgroups of the classical groups which are isomorphic with SU(2) by which we can prove the above
argument.

Hereafter, we put (G,H,d) = (Sp,O,1), (SU,U,2), (SO,Sp,4). We will define a family of subgroups Sk,l(G) of G(dk + l)
indexed by positive integers k and non-negative integers l. Since the Lie group G(dk + l) must be simple, we will assume
dk + l > 4 when G = SO.

Let c : O(n) → U(n), q : U(n) → Sp(n), c′ : Sp(n) → SU(2n), and r : U(n) → O(2n) be the canonical inclusions. In order to
make things clear, we write the maps c′ and r explicitly as follows. Let Mn(K) be the set of all square matrices of order n
over a field K. For A = (aij), B = (bij) ∈ Mn(C) such that A + Bj ∈ Sp(n), we put

c′(A + Bj) = (
c′(aij + bijj)

)
where c′(a + jb) = (

a −b̄
b ā

)
for a,b ∈ C. We also put, for C = (ci j), D = (dij) ∈ Mn(R) such that C + D

√−1 ∈ U(n),

r(C + D
√−1 ) = (

r(ci j + dij
√−1 )

)
where r(c + d

√−1 ) = ( c −d
d c

)
for c,d ∈ R. We denote the matrix

( A O
O B

)
by A ⊕ B . We consider the following family of

subgroups of the classical groups isomorphic with SU(2) ≈ S3:
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