

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

C-spaces and matrix of infinite-dimensionality

V.V. Fedorchuk 1

Moscow State University, Russian Federation

ARTICLE INFO

Article history: Received 15 February 2008 Received in revised form 25 January 2009 Accepted 25 January 2009

Keywords: C-space Simplicial complex Weakly infinite-dimensional space

ABSTRACT

We investigate classes (m,n)-C which are intermediate between the class S-wid of weakly infinite-dimensional spaces in the sense of Smirnov and the class S- ∞ -C of finite C-spaces in the sense of Borst. We find relationships between classes (m_1, n_1) -C and (m_2, n_2) -C. It allows us to construct a matrix of infinite-dimensionality.

© 2010 Elsevier B.V. All rights reserved.

0. Introduction

Property *C* for metric spaces was introduced by Haver in 1973 [12], who proved that every locally contractible metric space which can be represented as a union of countably many compacta with property *C* is an ANR-space. A topological definition of *C*-spaces was proposed by Addis and Gresham in 1978 [1]. Recall their definition.

1. Definition. A topological space X is said to be a C-space (notation: $X \in C$) if for every sequence (u_i) , $i \in \mathbb{N}$, of open covers of X there exists a sequence (v_i) of disjoint families of open subsets of X such that each family v_i is a refinement of u_i , and the collection of families v_i is a cover of X.

It has become clear that *C*-spaces play an important role in the theory of cell-like maps [2], in the study of selections of multivalued maps [11,14,15], and in other areas of topology.

The nerves $N(v_i)$ of disjoint families v_i from Definition 1 are zero-dimensional simplicial complexes. One can consider an arbitrary class \mathcal{G} of simplicial complexes instead of the class of zero-dimensional complexes. In such a manner in [9] there were introduced classes of \mathcal{G} -C-spaces, S- \mathcal{G} -C-spaces (Definition 2.8), and classes m- \mathcal{G} -C-spaces, and S-m- \mathcal{G} -C-spaces (Definition 2.11). In Section 2 we recall some properties of these classes of spaces from [9].

In Section 3 we study the classes $(m,n)-C \equiv S-m-G(n-1)-C$, where G(k) is the class of all finite simplicial complexes G with dim $G \leq k$. Theorem 3.1 states that $(m,n)-C \subset (km,kn)-C$ for positive integers k,m,n with $n \leq m$. Theorem 3.2 contains an "opposite" inclusion: $(m^k,kn)-C \subset (m,n)-C$. Main result of Section 3 is Theorem 3.3 which asserts that the classes (n+1,n)-C coincide with the class S-wid of all weakly infinite-dimensional spaces in the sense of Smirnov. As a corollary, we get

(m, n)-C = S-wid

for every m with $n+1 \le m \le 2n$. It allows us to construct a matrix of infinite-dimensionality in Section 4.

E-mail address: vvfedorchuk@gmail.com.

¹ This work was supported by RFBI (Russian Foundation of Basic Investigations), grant No. 09-01-00741, and by RNP, grant No. 2.1.1.3704.

Section 1 contains an auxiliary information. An additional information one can find in [5]. All spaces are assumed to be normal T_1 . The symbol |A| stands for the cardinality of a set A. If A is a subset of a space X, then $[A] \equiv [A]_X$ denotes the closure of A in X. By \bigsqcup we denote a union of disjoint sets.

1. Preliminaries

By cov(X) we denote the set of all open covers of a space X. The set of all finite open covers of X is denoted by $cov_{\infty}(X)$ and $cov_m(X)$ stands for the set of all open covers of X consisting of $\leq m$ members.

Let u and v be families of subsets of a set X. They say that v refines u (v is a refinement of u) if each $V \in v$ is contained in some $U \in u$. A family v combinatorially refines u (v is a combinatorial refinement of u) if there exists an injection $i: v \to u$ such that $V \subset i(V)$ for each $V \in v$.

For a simplicial complex G by v(G) we denote the set of all its vertices. By Fin S we denote the set of all non-empty finite subsets of a set S. Let u be a family of arbitrary sets and let $u_0 = \{U \in u : U \neq \emptyset\}$. The *nerve* N(u) of the family u is a simplicial complex such that $v(N(u)) = \{a_U : U \in u_0\}$ and a set $\Delta \in \text{Fin}\,v(N(u))$ is a simplex of N(u) if and only if $\bigcap \{U : a_U \in \Delta\} \neq \emptyset$.

By the *order* of a family u of sets we mean the largest n such that u contains n sets with a non-empty intersection. If no such integer exists, we say that u has order ∞ . The order of u is denoted by ord u. Clearly,

$$\operatorname{ord} u \leqslant n \quad \Leftrightarrow \quad \dim N(u) \leqslant n-1; \tag{1.1}$$

ord
$$u \le 1 \quad \Leftrightarrow \quad u$$
 is a disjoint family. (1.2)

- **1.1. Proposition.** Let $u \in \text{cov}_{\infty}(X)$ and let ord u = n. Then there exist families v_i , i = 1, ..., n, consisting of open subsets of X such that v_i combinatorially refine u, $\bigcup \{v_i : 1, ..., n\} \in \text{cov}(X)$, and $\text{ord } v_i \leq 1$.
- **1.2. Definition.** Let $u = \{U_1, \dots, U_n\} \in \text{cov}(X)$ and let a family v refine u. Define a new family v_1 in the following way:

$$V_i^1 = \bigcup \{ V \in v \colon V \subset U_i, \ j < i \Rightarrow V \not\subset U_j \}; \quad v_1 = \{ V_1^1, \dots, V_n^1 \}.$$

The family v_1 is called an *integration* of v with respect to u.

1.3. Proposition. If v_1 is an integration of v with respect to u, then

 v_1 combinatorially refines u;

ord $v_1 \leq \text{ord } v$;

 $\bigcup v_1 = \bigcup v$, in particular, $v \in cov(X) \Rightarrow v_1 \in cov(X)$.

Recall that a space X is said to be *weakly infinite-dimensional in the sense of Smirnov* (notation: $X \in S$ -wid) if for every sequence $\Phi_i = \{F_1^i, F_2^i\}$, $i \in \mathbb{N}$, of pairs of disjoint closed subsets of X there exist partitions P_i between F_1^i and F_2^i and $n \in \mathbb{N}$ such that $\bigcap_{i=1}^n P_i = \emptyset$.

By wid we denote the class of all weakly infinite-dimensional spaces in the sense of Alexandroff (notation: $X \in \text{wid}$). One can get its definition if the requirement $\bigcap_{i=1}^n P_i = \emptyset$ from the definition of S-wid-spaces replace by the requirement $\bigcap_{i=1}^{\infty} P_i = \emptyset$. For compact (and even countably compact) spaces the classes S-wid and wid coincide.

1.4. Theorem. ([7,13]) For an arbitrary space X we have

$$X \in S$$
-wid $\Leftrightarrow \beta X \in wid$.

For topological spaces X_1, \ldots, X_n , let $B(X_1, \ldots, X_n)$ be a subset of $\prod_{i=1}^n$ cone X_i which is defined as follows

$$B(X_1,\ldots,X_n)\equiv B=B_1\cup\cdots\cup B_n,$$

where

$$B_i = X_i \times \prod_{j \neq i} \operatorname{cone} X_j.$$

1.5. Definition. ([8]) Let \Re be a class of ANR-compacta and let

$$f_i: X \to \operatorname{cone} R_i, \quad R_i \in \mathbb{R}, \ i = 1, \dots, n,$$

be maps. The family $\{f_1,\ldots,f_n\}$ is said to be \Re -inessential if the map

$$f = f_1 \Delta \cdots \Delta f_n|_{f^{-1}B(R_1,\dots,R_n)} : f^{-1}B(R_1,\dots,R_n) \to B(R_1,\dots,R_n)$$

extends over X.

Download English Version:

https://daneshyari.com/en/article/4660395

Download Persian Version:

https://daneshyari.com/article/4660395

<u>Daneshyari.com</u>