

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Universal free G-spaces

Natella Antonyan

Departamento de Matemáticas, Division de Ingeniería y Arquitectura, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, 14380 México Distrito Federal, Mexico

ARTICLE INFO

Article history:

Received 28 October 2008 Received in revised form 11 March 2009 Accepted 27 March 2009

MSC: 54H150 54B05 54D35

Keywords: Universal free G-space Join Orbit space Cross-section

ABSTRACT

For a compact Lie group G, we prove the existence of a universal G-space in the class of all paracompact (respectively, metrizable, and separable metrizable) free G-spaces. We show that such a universal free G-space cannot be compact.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

By a G-space we mean a topological space X together with a fixed continuous action $(g, x) \mapsto gx$ of a topological group G on X.

In this paper we are mostly interested in *free G-spaces*, where the acting group G is compact Lie. Recall that a G-space X is free if for every $x \in X$ the equality gx = x implies g = e, the unity of G. A G-space G is called universal for a given class of G-spaces $G - \mathcal{P}$ if $G \in G$ and G contains as a G-subspace a G-homeomorphic copy of any G-space G from the class $G - \mathcal{P}$.

In [2] it is proved that if *G* is a compact Lie group then there exists a locally compact, noncompact free *G*-space which is universal in the class of all Tychonoff free *G*-spaces.

On the other hand, in [1] it was established that for any integer $n \ge 0$, infinite cardinal number τ , and a compact Lie group G with $\dim G \le n$, there exists a compact free G-space \mathcal{F}^n_{τ} which is universal in the class of all paracompact free G-spaces X of weight w $X \le \tau$ and dimension $\dim X \le n$. As is shown in Example 3.9, this result is no longer true without the finite dimensionality restriction (we stress the compactness of the universal free G-space \mathcal{F}^n_{τ} in this setting).

In this connection it is natural to ask the following two questions:

Question 1. Does there exist a universal free G-space in the class of all paracompact (respectively, metrizable) free G-spaces of a given infinite weight τ ?

Question 2. Does there exist a universal free G-space in the class of all compact free G-spaces of a given infinite weight τ ?

The purpose of this paper is to answer (in the positive) Question 1 while Question 2 still remains open.

2. Preliminaries

Throughout the paper all topological spaces and topological groups are assumed to be Tychonoff (= completely regular and Hausdorff). All equivariant or G-maps are assumed to be continuous.

The letter "G" will always denote a compact Lie group. By e we always will denote the unity of the group G.

The basic ideas and facts of the theory of *G*-spaces or topological transformation groups can be found in G. Bredon [3] and R. Palais [8].

For the convenience of the reader we recall, however, some more special definitions and facts below.

By an action of the group G on a space X we mean a continuous map $(g,x) \mapsto gx$ of the product $G \times X$ into X such that (gh)x = g(hx) and ex = x whenever $x \in X$ and $g, h \in G$. A space X together with a fixed action of the group G is called a G-space.

A continuous map $f: X \to Y$ of G-spaces is called an equivariant map or, for short, a G-map, if f(gx) = gf(x) for every $x \in X$ and $g \in G$. If G acts trivially on Y then we use the term "invariant map" instead of "equivariant map". By a G-embedding we shall mean a topological embedding $X \hookrightarrow Y$ which is a G-map.

A *G*-space *X* is called free if for every $x \in X$ the equality gx = x implies g = e.

For a subset $S \subset X$ and a subgroup $H \subset G$, H(S) denotes the H-saturation of S, i.e., $H(S) = \{hs \mid h \in H, s \in S\}$. In particular G(x) denotes the G-orbit $\{gx \in X \mid g \in G\}$ of x. If H(S) = S then S is said to be an H-invariant set, or simply, an H-set. The set X/G of all G-orbits endowed with the quotient topology is called the G-orbit space. Often we shall use the term "invariant set" for a "G-invariant set".

In the sequel we will consider the acting group G itself as a G space endowed with the action induced by left translations.

If X and Y are G-spaces then $X \times Y$ will always be regarded as a G-space equipped by the diagonal action of G. If one of the G-spaces X and Y is free then, clearly, so is their product $X \times Y$.

Let us recall also the well-known and important definition of a local cross-section:

Definition 2.1. A subset *S* of a *G*-space *X* is called a local cross-section in *X*, if:

- (1) the saturation G(S) is open in X,
- (2) if $g \in G \setminus \{e\}$ then $gS \cap S = \emptyset$,
- (3) S is closed in G(S).

The saturation G(S) will be said to be a tubular set. If in addition G(S) = X then we say that S is a global cross-section of X.

One of the basic results of the theory of topological transformation groups is the following result of A.M. Gleason [5, Theorem 3.3] about the existence of local cross-sections.

Theorem 2.2. Let G be a compact Lie group, X a free G-space and $x \in X$ a point. Then there exists a local cross-section S in X such that $x \in S$.

This result was further generalized to one of the most important results of the theory of transformation groups known as the Slice Theorem (see e.g., [8, Theorem 1.7.18] or [3, Ch. II, Theorem 5.4]).

An important consequence of the local cross-section theorem is the following:

Lemma 2.3. Let G be a compact Lie group, X a free G-space. Then the orbit projection $p: X \to X/G$ is a locally trivial fibration.

Before proceeding with the proof of the lemma we recall that a locally trivial fibration here means that every point $p(x) \in X/G$ admits a neighborhood U such that the inverse image $p^{-1}(U)$ is G-equivalent to $G \times U$, i.e., there exists a G-homeomorphism $f: p^{-1}(U) \to G \times U$ such that the following diagram commutes:

Download English Version:

https://daneshyari.com/en/article/4660588

Download Persian Version:

https://daneshyari.com/article/4660588

<u>Daneshyari.com</u>