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Let G be a topological group with the identity element e. Given a space X , we denote by
C p(X, G) the group of all continuous functions from X to G endowed with the topology of
pointwise convergence, and we say that X is: (a) G-regular if, for each closed set F ⊆ X
and every point x ∈ X \ F , there exist f ∈ C p(X, G) and g ∈ G \ {e} such that f (x) = g
and f (F ) ⊆ {e}; (b) G�-regular provided that there exists g ∈ G \ {e} such that, for each
closed set F ⊆ X and every point x ∈ X \ F , one can find f ∈ C p(X, G) with f (x) = g and
f (F ) ⊆ {e}. Spaces X and Y are G-equivalent provided that the topological groups C p(X, G)

and C p(Y , G) are topologically isomorphic.
We investigate which topological properties are preserved by G-equivalence, with a special
emphasis being placed on characterizing topological properties of X in terms of those of
C p(X, G). Since R-equivalence coincides with l-equivalence, this line of research “includes”
major topics of the classical C p-theory of Arhangel’skiı̆ as a particular case (when G = R).
We introduce a new class of TAP groups that contains all groups having no small subgroups
(NSS groups). We prove that: (i) for a given NSS group G , a G-regular space X is pseudo-
compact if and only if C p(X, G) is TAP, and (ii) for a metrizable NSS group G , a G�-regular
space X is compact if and only if C p(X, G) is a TAP group of countable tightness. In par-
ticular, a Tychonoff space X is pseudocompact (compact) if and only if C p(X,R) is a TAP
group (of countable tightness). Demonstrating the limits of the result in (i), we give an
example of a precompact TAP group G and a G-regular countably compact space X such
that C p(X, G) is not TAP.
We show that Tychonoff spaces X and Y are T-equivalent if and only if their free pre-
compact Abelian groups are topologically isomorphic, where T stays for the quotient
group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for ev-
ery Abelian precompact group G . We establish that T-equivalence preserves the following
topological properties: compactness, pseudocompactness, σ -compactness, the property of
being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite)
number of connected components, connectedness, total disconnectedness. An example of
R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.
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In notation and terminology we follow [6] and [9] if not stated otherwise. All topological spaces are assumed to be Tychonoff
(that is, completely regular T1 spaces) and nonempty, and all topological groups are assumed to be Hausdorff.

By N we denote the set of all natural numbers, ω stays for the least nonzero limit ordinal, Z is the discrete additive
group of integers, R is the additive group of reals with its usual topology, T stays for the quotient group R/Z, and Z(n)

denotes the cyclic group of order n (with the discrete topology). The identity element of a group G is denoted by eG , or
simply by e when there is no danger of confusion.

If G is a topological group, then the symbol Ĝ stays for the completion of G with respect to the two-sided uniformity.
If G = Ĝ , then G is called complete. It is well known that Ĝ always exists, Ĝ is a topological group, G is dense in Ĝ , and
if G is a dense subgroup of a complete group H , then Ĝ = H . If G is a subgroup of some compact group, then G is called
precompact.

1. Introduction

Definition 1.1. Let X be a space and G a topological group.

(i) We shall use C(X, G) to denote the group of all continuous functions from X to G , equipped with the “pointwise
group operations”. That is, the product of f ∈ C(X, G) and g ∈ C(X, G) is the function f g ∈ C(X, G) defined by f g(x) =
f (x)g(x) for all x ∈ X , and the inverse element of f is the function h ∈ C(X, G) defined by h(x) = ( f (x))−1 for all x ∈ X .

(ii) The family{
W (x, U ): x ∈ X, U is an open subset of G

}
,

where

W (x, U ) = {
f ∈ C(X, G): f (x) ∈ U

}
,

forms a subbase of the topology of pointwise convergence on C(X, G). We use the symbol C p(X, G) to denote the set
C(X, G) endowed with this topology.

One can easily see that C p(X, G) is a topological group.

Definition 1.2. Let G and H be topological groups.

(i) Recall that G and H are said to be topologically isomorphic if there exists a bijection f : G → H which is both a group
homomorphism and a homeomorphism. We write G ∼= H whenever G and H are topologically isomorphic.

(ii) We say that spaces X and Y are G-equivalent, and denote this by X
G∼ Y , provided that C p(X, G) ∼= C p(Y , G).

(iii) Let C be a class of spaces. We say that a topological property E is preserved by G-equivalence within the class C provided

that the following condition holds: If X ∈ C , Y ∈ C , X
G∼ Y and X has the property E , then Y must have the property E

as well. The sentence “E is preserved by G-equivalence” is used as an abbreviation for “E is preserved by G-equivalence
within the class of Tychonoff spaces”.

(iv) Given a class C of spaces, we say that G-equivalence implies H-equivalence within the class C provided that the following

statement holds: If X ∈ C , Y ∈ C and X
G∼ Y , then X

H∼ Y . The sentence “G-equivalence implies H-equivalence” shall be
used as an abbreviation for “G-equivalence implies H-equivalence within the class of Tychonoff spaces”.

In [15] Markov has introduced the free topological group F (X) of a space X and defined spaces X and Y to be
M-equivalent if F (X) ∼= F (Y ). Thereafter, a significant effort went into an investigation of how topological properties of
F (X) depend on those of X , as well as which topological properties are preserved by M-equivalence.

Every continuous function f : X → G from a space X to a topological group G can be (uniquely) extended to a continuous
group homomorphism f̂ : F (X) → G . This elementary fact (with T as G) was applied by Graev to show that the closed unit
interval and the circle are not M-equivalent [10]. Tkachuk noticed in [22] that M-equivalence implies G-equivalence for
every Abelian topological group G . He then applied this observation to G = Z(2) to show that connectedness is preserved
by M-equivalence [22].

Later on, many properties of M-equivalence were discovered by means of the notion of l-equivalence; see [1]. Recall
that spaces X and Y are called l-equivalent provided that C p(X,R) and C p(Y ,R) are topologically isomorphic as topological
vector spaces. A fundamental observation pertinent to the subject of this paper has been made in [22] by Tkachuk: spaces X
and Y are l-equivalent if and only if C p(X,R) and C p(Y ,R) are topologically isomorphic as topological groups. In other words,
l-equivalence of spaces coincides with their R-equivalence (in our notation). A far reaching conclusion that one might
get from this fact is that, despite a significant emphasis on the topological vector space structure commonly placed in the
C p-theory [1], this structure is largely irrelevant to the study of the notion of l-equivalence, and in fact may as well be
replaced by the topological group structure. It is this conclusion that led us to an idea of introducing the general notion of
G-equivalence, for an arbitrary topological group G .

This opens up a topic of studying the properties of the topological group C p(X, G), for a given space X and a topological
group G . Let us outline major problems that appear to be of particular interest in this new area of research.
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