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1. Introduction

In 1935 P.S. Alexandroff raized the question about the relationships between three main dimensions dim, ind, and Ind
in the class of compacta and later showed that dim X � ind X for any compactum X . First examples of compacta with
noncoinciding dimensions dim and ind were constructed by A. Lunc and V. Lokucievskiı̆ in 1949. Then more examples of
compacta with additional besides dimensional properties appeared.

In [8] B. Pasynkov introduced the notion of a tailing of a space and proposed methods for constructing compacta with
noncoinciding dimensions dim and ind which were developed in [4,5]. It turned out that a lot of compacta with noncoin-
ciding dimensions dim and ind are realized as tailings. Besides, compacta constructed by A. Lunc, S. Mardes̆ić, B. Pasynkov,
P. Vopĕnka are subsets of the topological products of simple spaces. Thus the following problem was stated by B. Pasynkov:
Characterize compact subsets of topological products with noncoinciding dimensions. It is also worth noting that closely
connected questions about dimensions of subsets of products were considered in [6,7]. In this work a partial answer on this
question is given.

Below a space means a topological space. A compactum is a Hausdorff compact space. A map—a continuous mapping
between spaces. The abbreviation for neighbourhood(s) is nbd(s), cf. for ordinal denotes it cofinality, I = [0,1]. By clX , intX ,
bdX we denote closure, interior, and boundary of the set in the space X respectively.

All information about, dimensions may be found in [1] or [3] and we follow the notations from [2].
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2. Preliminaries

Pair of nonempty open in X disjoint (briefly odp) sets O i , i = 1,2, defines a partition F = X \ (O 1 ∪ O 2) in X . The odp O i ,
i = 1,2, is essential if clX O 1 ∩ clX O 2 �= ∅. If O 1 ∪ O 2 is dense in X then O i , i = 1,2, is called oddp in X [5]. For an odp O i ,
i = 1,2, in X clX O 1 ∩ clX O 2 = bdX O 1 ∩ bdX O 2,

Lemma 2.1. Let O i , i = 1,2, be an unessential odp in a normal space X, and for partition F defined by it Ind F � n, n ∈ {−1,0} ∪ N.
Then there exists odp Ui , i = 1,2, with partition F ′ defined by it, such that clX O i ⊂ Ui , i = 1,2, and Ind F ′ � max{−1,n − 1}.

Proof. The sets clX O i ∩ F , i = 1,2, are closed disjoint subsets of F . If both of them are not empty then since Ind F � n,
there exists odp O ′

i , i = 1,2, in F with partition F ′ defined by it such that clX O i ∩ F ⊂ O ′
i , i = 1,2, and Ind F ′ � n − 1. It is

easy to check that the sets Ui = clX O i ∪ O ′
i , i = 1,2, are an odp in X which defines partition F ′ .

If, for example, clX O 1 ∩ F = ∅ then the sets U1 = clX O 1 and U2 = F ∪ clX O 2 are the required disjoint clopen pair in X
and the partition defined by it is empty. �
Corollary 2.2. Let X be a normal space connected between points x1 and x2 . Then any odp O i , i = 1,2, such that xi ∈ O i , i = 1,2, and
the partition defined by it is strongly zero-dimensional is essential.

Lemma 2.3. Let X be a hereditarily normal space, O i , i = 1,2—odp in X and F —a partition in X defined by it. If Ind(clX O 1 ∩
clX O 2) � m and Ind(F \ (clX O 1 ∩ clX O 2)) � n, n,m ∈ {−1,0} ∪ N, then there exists odp Ui , i = 1,2, with partition F ′ defined by
it such that O i ⊂ Ui , i = 1,2, and Ind F ′ � max{m,n − 1}.

Proof. Put X ′ = X \(clX O 1 ∩clX O 2) and O ′
i = X ′ ∩ O i , i = 1,2. Since the odp O ′

i , i = 1,2, is unessential in a normal space X ′
and for the partition T = X ′ ∩ F defined by it Ind T � n there exists by Lemma 2.1 odp Ui , i = 1,2, and a partition T ′
in X ′ defined by it, such that clX O i ∩ X ′ ⊂ Ui , i = 1,2, and Ind T ′ � n − 1. Since Ui , i = 1,2, is also an odp in X so
X \ (U1 ∪ U2) = F ′ = (clX O 1 ∩ clX O 2) ∪ T ′ . The set clX O 1 ∩ clX O 2 is closed in F ′ , Ind(clX O 1 ∩ clX O 2) � m, F ′ \ (clX O 1 ∩
clX O 2) = T ′ and Ind T ′ � n − 1. From Dowker’s theorem (see, for example, [1, Chapter 7, §2, Theorem 2]) it follows that
Ind F ′ � max{m,n − 1}. �
Lemma 2.4. Let X = X1 ∪ X2 , where Xi are closed in X, i = 1,2, and X2 is hereditarily normal. Then

(i) ind X � max{ind X1, Ind(X2 \ X1)} if X is regular;
(ii) Ind X � max{Ind X1, Ind(X2 \ X1)} if X is normal (this is an obvious generalization of Dowker’s theorem).

Proof. (i) Set max{ind X1, Ind(X2 \ X1)} = n and apply induction on n � −1. If n = −1 then X = ∅ and the statement is
evident.

Let n � 0. If x ∈ X2 \ X1 or x ∈ X1 \ X2 then evidently indx X � n. Put X1 ∩ X2 = Y . Consider x ∈ Y and a closed set B
such that x /∈ B . If Y = {x} then there is clearly a partition C between x and B in X such that ind C < n.

If |Y | > 1 then we can assume that B ∩ Y �= ∅. Choose now a partition C1 between x and B ∩ X1 in X1 such that
ind C1 < n. Let also Ui , i = 1,2, be open disjoint subsets of X1 such that X1 \ C1 = U1 ∪ U2, x ∈ U1 and B ∩ X1 ⊂ U2.

Put X2 \ C1 = Z . Observe that U1 ∩ Y and (U2 ∩ Y ) ∪ (B ∩ X2) are closed disjoint subsets of the normal space Z . Choose
open subsets V i , i = 1,2, of Z such that U1 ∩ Y ⊂ V 1, (U2 ∪ Y ) ∪ (B ∩ X2) ⊂ V 2 and clZ (V 1) ∩ clZ (V 2) = ∅.

Note that the sets Ai = clZ (V i) ∩ (X2 \ X1), i = 1,2, are closed and disjoint in X2 \ X1. Thus there is a partition C2
between A1 and A2 in X2 \ X1 such that Ind C2 < n. Let also O i , i = 1,2, be open disjoint subsets of X2 \ X1 such that
(X2 \ X1) \ C2 = O 1 ∪ O 2 and Ai ⊂ O i , i = 1,2.

Observe that the sets W i = V i ∪ O i are open and disjoint in Z , x ∈ W1 and B ∩ X2 ⊂ W2. Put C2 = X2 \ (W1 ∪ W2). It is
evident that C2 = (C1 ∩ X2) ∪ C2 is a closed subset of X2, C2 \ C1 = C2 and the set C = C1 ∪ C2 is a partition between x and
B in X . By inductive assumption we have ind C < n. The point (i) is proved.

In a similar manner we can prove the point (ii). �
Lemma 2.5. Let K be a perfectly normal retract of the normal space Y and Gi , i ∈ N, be the nbd base of K in Y such that clY Gi+1 ⊂ Gi ,
i ∈ N, and G1 = Y . If Fi = clY Gi \ Gi+1 is perfectly normal for i = 2 j, j ∈ N, and X is a closed subset of Y then Ind X � sup{Ind(X ∩
K ), Ind(X ∩ Fi): i ∈ N}.

Proof. Put Xi = X ∩ Fi , i ∈ N, and XK = X ∩ K . Set sup{Ind XK , Ind Xi: i ∈ N} = n, n ∈ N ∪ {−1}. Note that the case n = ∞ is
evident. Apply induction. If n = −1 the inequality is obviously true. Let n � 0.

Let A and B be disjoint closed sets in X and put AK = K ∩ A, B K = K ∩ B . If either AK = ∅ or B K = ∅ then (suppose
AK = ∅) there exists j ∈ N such that A ⊂ X \ clY G j . The set X \ G j is a union of closed subsets

⋃{Xi: i < j, i is odd} and⋃{Xi: i < j, i is even}, and the second one is a perfectly normal space where both subsets are in fact finite free sums. By
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