Characterization of compact spaces with noncoinciding dimensions which are subsets of products of simple spaces ${ }^{\text {* }}$

K.L. Kozlov
Department of General Topology and Geometry, Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119991, Russia

A R TICLE I N F O

Article history:

Received 7 December 2006
Accepted 29 May 2007

MSC:

54F45
54D13

Keywords:

Compactum
Covering dimension
Inductive dimensions
Product

Abstract

In this paper we characterize closed subsets of products of simple compact spaces with noncoinciding dimensions dim and ind.

© 2008 Published by Elsevier B.V.

1. Introduction

In 1935 P.S. Alexandroff raized the question about the relationships between three main dimensions dim, ind, and Ind in the class of compacta and later showed that $\operatorname{dim} X \leqslant \operatorname{ind} X$ for any compactum X. First examples of compacta with noncoinciding dimensions dim and ind were constructed by A. Lunc and V. Lokucievskiĭ in 1949. Then more examples of compacta with additional besides dimensional properties appeared.

In [8] B. Pasynkov introduced the notion of a tailing of a space and proposed methods for constructing compacta with noncoinciding dimensions dim and ind which were developed in [4,5]. It turned out that a lot of compacta with noncoinciding dimensions dim and ind are realized as tailings. Besides, compacta constructed by A. Lunc, S. Mardes̆ić, B. Pasynkov, P. Vopĕnka are subsets of the topological products of simple spaces. Thus the following problem was stated by B. Pasynkov: Characterize compact subsets of topological products with noncoinciding dimensions. It is also worth noting that closely connected questions about dimensions of subsets of products were considered in [6,7]. In this work a partial answer on this question is given.

Below a space means a topological space. A compactum is a Hausdorff compact space. A map-a continuous mapping between spaces. The abbreviation for neighbourhood(s) is nbd(s), cf. for ordinal denotes it cofinality, $I=[0,1]$. $\mathrm{By} \mathrm{cl}_{X}$, int ${ }_{X}$, bd_{X} we denote closure, interior, and boundary of the set in the space X respectively.

All information about, dimensions may be found in [1] or [3] and we follow the notations from [2].

[^0]
2. Preliminaries

Pair of nonempty open in X disjoint (briefly odp) sets $O_{i}, i=1,2$, defines a partition $F=X \backslash\left(O_{1} \cup O_{2}\right)$ in X. The odp O_{i}, $i=1$, 2, is essential if $\mathrm{cl}_{X} O_{1} \cap \mathrm{cl}_{X} O_{2} \neq \emptyset$. If $O_{1} \cup O_{2}$ is dense in X then $O_{i}, i=1,2$, is called oddp in X [5]. For an odp O_{i}, $i=1,2$, in $X \mathrm{cl}_{X} O_{1} \cap \mathrm{cl}_{X} O_{2}=\operatorname{bd}_{X} O_{1} \cap \operatorname{bd}_{X} O_{2}$,

Lemma 2.1. Let $O_{i}, i=1,2$, be an unessential odp in a normal space X, and for partition F defined by it Ind $F \leqslant n, n \in\{-1,0\} \cup \mathbb{N}$. Then there exists odp $U_{i}, i=1,2$, with partition F^{\prime} defined by it, such that $\mathrm{cl}_{X} O_{i} \subset U_{i}, i=1,2$, and $\operatorname{Ind} F^{\prime} \leqslant \max \{-1, n-1\}$.

Proof. The sets $\mathrm{cl}_{X} O_{i} \cap F, i=1,2$, are closed disjoint subsets of F. If both of them are not empty then since Ind $F \leqslant n$, there exists odp $O_{i}^{\prime}, i=1,2$, in F with partition F^{\prime} defined by it such that $\mathrm{cl}_{X} O_{i} \cap F \subset O_{i}^{\prime}, i=1,2$, and Ind $F^{\prime} \leqslant n-1$. It is easy to check that the sets $U_{i}=\mathrm{cl}_{X} O_{i} \cup O_{i}^{\prime}, i=1,2$, are an odp in X which defines partition F^{\prime}.

If, for example, $\mathrm{cl}_{X} O_{1} \cap F=\emptyset$ then the sets $U_{1}=\operatorname{cl}_{X} O_{1}$ and $U_{2}=F \cup \mathrm{cl}_{X} O_{2}$ are the required disjoint clopen pair in X and the partition defined by it is empty.

Corollary 2.2. Let X be a normal space connected between points x_{1} and x_{2}. Then any odp $O_{i}, i=1,2$, such that $x_{i} \in O_{i}, i=1,2$, and the partition defined by it is strongly zero-dimensional is essential.

Lemma 2.3. Let X be a hereditarily normal space, $O_{i}, i=1,2-o d p$ in X and $F-a$ partition in X defined by it. If $\operatorname{Ind}\left(\mathrm{cl}_{X} O_{1} \cap\right.$ $\left.\mathrm{cl}_{X} O_{2}\right) \leqslant m$ and $\operatorname{Ind}\left(F \backslash\left(\operatorname{cl}_{X} O_{1} \cap \mathrm{cl}_{X} O_{2}\right)\right) \leqslant n, n, m \in\{-1,0\} \cup \mathbb{N}$, then there exists odp $U_{i}, i=1$, 2, with partition F^{\prime} defined by it such that $O_{i} \subset U_{i}, i=1,2$, and $\operatorname{Ind} F^{\prime} \leqslant \max \{m, n-1\}$.

Proof. Put $X^{\prime}=X \backslash\left(\mathrm{cl}_{X} O_{1} \cap \mathrm{cl}_{X} O_{2}\right)$ and $O_{i}^{\prime}=X^{\prime} \cap O_{i}, i=1$, . Since the odp $O_{i}^{\prime}, i=1$, 2, is unessential in a normal space X^{\prime} and for the partition $T=X^{\prime} \cap F$ defined by it Ind $T \leqslant n$ there exists by Lemma 2.1 odp $U_{i}, i=1,2$, and a partition T^{\prime} in X^{\prime} defined by it, such that $\mathrm{cl}_{X} O_{i} \cap X^{\prime} \subset U_{i}, i=1,2$, and Ind $T^{\prime} \leqslant n-1$. Since $U_{i}, i=1,2$, is also an odp in X so $X \backslash\left(U_{1} \cup U_{2}\right)=F^{\prime}=\left(\mathrm{cl}_{X} O_{1} \cap \mathrm{cl}_{X} O_{2}\right) \cup T^{\prime}$. The set $\mathrm{cl}_{X} O_{1} \cap \mathrm{cl}_{X} O_{2}$ is closed in F^{\prime}, $\operatorname{Ind}\left(\mathrm{cl}_{X} O_{1} \cap \mathrm{cl}_{X} O_{2}\right) \leqslant m, F^{\prime} \backslash\left(\mathrm{cl}_{X} O_{1} \cap\right.$ $\mathrm{cl}_{X} \mathrm{O}_{2}$) $=T^{\prime}$ and Ind $T^{\prime} \leqslant n-1$. From Dowker's theorem (see, for example, [1, Chapter 7, §2, Theorem 2]) it follows that Ind $F^{\prime} \leqslant \max \{m, n-1\}$.

Lemma 2.4. Let $X=X_{1} \cup X_{2}$, where X_{i} are closed in $X, i=1,2$, and X_{2} is hereditarily normal. Then
(i) ind $X \leqslant \max \left\{\right.$ ind $\left.X_{1}, \operatorname{Ind}\left(X_{2} \backslash X_{1}\right)\right\}$ if X is regular;
(ii) Ind $X \leqslant \max \left\{\operatorname{Ind} X_{1}, \operatorname{Ind}\left(X_{2} \backslash X_{1}\right)\right\}$ if X is normal (this is an obvious generalization of Dowker's theorem).

Proof. (i) Set $\max \left\{\right.$ ind $\left.X_{1}, \operatorname{Ind}\left(X_{2} \backslash X_{1}\right)\right\}=n$ and apply induction on $n \geqslant-1$. If $n=-1$ then $X=\emptyset$ and the statement is evident.

Let $n \geqslant 0$. If $x \in X_{2} \backslash X_{1}$ or $x \in X_{1} \backslash X_{2}$ then evidently $\operatorname{ind}_{x} X \leqslant n$. Put $X_{1} \cap X_{2}=Y$. Consider $x \in Y$ and a closed set B such that $x \notin B$. If $Y=\{x\}$ then there is clearly a partition C between x and B in X such that ind $C<n$.

If $|Y|>1$ then we can assume that $B \cap Y \neq \emptyset$. Choose now a partition C_{1} between x and $B \cap X_{1}$ in X_{1} such that ind $C_{1}<n$. Let also $U_{i}, i=1$, 2, be open disjoint subsets of X_{1} such that $X_{1} \backslash C_{1}=U_{1} \cup U_{2}, x \in U_{1}$ and $B \cap X_{1} \subset U_{2}$.

Put $X_{2} \backslash C_{1}=Z$. Observe that $U_{1} \cap Y$ and $\left(U_{2} \cap Y\right) \cup\left(B \cap X_{2}\right)$ are closed disjoint subsets of the normal space Z. Choose open subsets $V_{i}, i=1$, 2 , of Z such that $U_{1} \cap Y \subset V_{1},\left(U_{2} \cup Y\right) \cup\left(B \cap X_{2}\right) \subset V_{2}$ and $\mathrm{cl}_{Z}\left(V_{1}\right) \cap \mathrm{cl}_{Z}\left(V_{2}\right)=\emptyset$.

Note that the sets $A_{i}=\operatorname{cl}_{Z}\left(V_{i}\right) \cap\left(X_{2} \backslash X_{1}\right), i=1,2$, are closed and disjoint in $X_{2} \backslash X_{1}$. Thus there is a partition C_{2} between A_{1} and A_{2} in $X_{2} \backslash X_{1}$ such that Ind $C_{2}<n$. Let also $O_{i}, i=1,2$, be open disjoint subsets of $X_{2} \backslash X_{1}$ such that $\left(X_{2} \backslash X_{1}\right) \backslash C_{2}=O_{1} \cup O_{2}$ and $A_{i} \subset O_{i}, i=1,2$.

Observe that the sets $W_{i}=V_{i} \cup O_{i}$ are open and disjoint in $Z, x \in W_{1}$ and $B \cap X_{2} \subset W_{2}$. Put $C_{2}=X_{2} \backslash\left(W_{1} \cup W_{2}\right)$. It is evident that $C_{2}=\left(C_{1} \cap X_{2}\right) \cup C_{2}$ is a closed subset of $X_{2}, C_{2} \backslash C_{1}=C_{2}$ and the set $C=C_{1} \cup C_{2}$ is a partition between x and B in X. By inductive assumption we have ind $C<n$. The point (i) is proved.

In a similar manner we can prove the point (ii).
Lemma 2.5. Let K be a perfectly normal retract of the normal space Y and $G_{i}, i \in \mathbb{N}$, be the nbd base of K in Y such that $\mathrm{cl}_{Y} G_{i+1} \subset G_{i}$, $i \in \mathbb{N}$, and $G_{1}=Y$. If $F_{i}=\operatorname{cl}_{Y} G_{i} \backslash G_{i+1}$ is perfectly normal for $i=2 j, j \in \mathbb{N}$, and X is a closed subset of Y then $\operatorname{Ind} X \leqslant \sup \{\operatorname{Ind}(X \cap$ $\left.K), \operatorname{Ind}\left(X \cap F_{i}\right): i \in \mathbb{N}\right\}$.

Proof. Put $X_{i}=X \cap F_{i}, i \in \mathbb{N}$, and $X_{K}=X \cap K$. Set $\sup \left\{\right.$ Ind X_{K}, Ind $\left.X_{i}: i \in \mathbb{N}\right\}=n, n \in \mathbb{N} \cup\{-1\}$. Note that the case $n=\infty$ is evident. Apply induction. If $n=-1$ the inequality is obviously true. Let $n \geqslant 0$.

Let A and B be disjoint closed sets in X and put $A_{K}=K \cap A, B_{K}=K \cap B$. If either $A_{K}=\emptyset$ or $B_{K}=\emptyset$ then (suppose $\left.A_{K}=\emptyset\right)$ there exists $j \in \mathbb{N}$ such that $A \subset X \backslash \operatorname{cl}_{Y} G_{j}$. The set $X \backslash G_{j}$ is a union of closed subsets $\bigcup\left\{X_{i}: i<j, i\right.$ is odd $\}$ and $\bigcup\left\{X_{i}: i<j, i\right.$ is even $\}$, and the second one is a perfectly normal space where both subsets are in fact finite free sums. By

https://daneshyari.com/en/article/4661005

Download Persian Version:

https://daneshyari.com/article/4661005

Daneshyari.com

[^0]: th Supported by Russian ministry of science and education, project RNP 2.1.1.7988. Contemporary differential geometry, topology and its applications. E-mail address: kkozlov@mech.math.msu.su.

