

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

There are no hereditary productive γ -spaces

Francis Jordan

Department of Mathematical Sciences, Box 8093, Georgia Southern University, Statesboro, GA 30458, USA

ARTICLE INFO

Article history: Received 5 February 2008 Received in revised form 5 May 2008 Accepted 28 May 2008

MSC.

primary 26A03, 54E99, 03E17C35

Keywords:

α₂ Fréchet

λ-set

γ-set Hurewicz

ABSTRACT

We show that if X is an uncountable productive γ -set [F. Jordan, Productive local properties of function spaces, Topology Appl. 154 (2007) 870–883], then there is a countable $Y \subseteq X$ such that $X \setminus Y$ is not Hurewicz.

Along the way we answer a question of A. Miller by showing that an increasing countable union of γ -spaces is again a γ -space. We will also show that λ -spaces with the Hurewicz property are precisely those spaces for which every co-countable set is Hurewicz.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Our main subject in this paper is the class of (productive) γ -spaces. The term productive γ -space is misleading because it does not mean a space whose product with every γ -space is a γ -space. While the product of a productive γ -space and a γ -space is again a γ -space, it is not known if this property characterizes productively γ -spaces.

In [6], under the Continuum Hypothesis, an uncountable productive γ -subspace of $\mathbb R$ was constructed. The construction was based on the construction of Galvin and Miller [2], under Martin's Axiom, of a γ -space of size continuum in $\mathbb R$. Both examples have the property that there is a countable subset whose removal will make the space not have the Hurewicz property [2]. There do exist uncountable γ -spaces that remain γ -spaces, and hence have the Hurewicz property, when any subset is removed, see [2]. Our main purpose is to show that this is not the case for *productive* γ -space. We will prove:

Theorem 1. If X is an uncountable productive γ -space, then there is a countable $Y \subseteq X$ such that $X \setminus Y$ is not Hurewicz.

Along the way we will prove a general result about Fréchet filters to gain information about countable unions of γ -spaces and productive γ -spaces. In particular, we answer a question of Miller [11], which is again asked in [15]. We will also use methods from [16] to establish a result about λ -spaces with the Hurewicz property which is of independent interest.

2. Terminology

We use standard set theoretic notation. Ordinals are identified with their set of predecessors. By ω we denote the first infinite ordinal. For a set X we denote the finite and countably infinite subsets of X by $[X]^{<\omega}$ and $[X]^{\omega}$, respectively. Given sets X and Y we denote the set of all functions with domain X and range contained in Y by Y^X .

E-mail address: fejord@hotmail.com.

By a *space* we mean a hereditarily Lindelöf topological space in which every open set may be written as a countable union of clopen sets. In particular, the closed sets of *X* are exactly the zero-sets of *X*. We will say *topological space* in cases where there are no assumptions about the topology.

3. Hurewicz λ -sets

Let X be a space. We say that X is Hurewicz [7] provided that for every sequence $(\mathcal{O}_n)_{n\in\omega}$ of open covers of X, there exist finite collections $\mathcal{V}_n\subseteq\mathcal{O}_n$ such that $X=\bigcup_{n\in\omega}\bigcap_{k\geqslant n}\bigcup\mathcal{V}_k$. Since X is Lindelöf, we may, without loss of generality, assume that the covers \mathcal{O}_n in the definition of Hurewicz are countable.

Let X be a space. We say that X is a λ -space [9] provided that every countable subset of X is a G_{δ} -set.

Given $f, g \in \omega^{\omega}$ we write $f <^* g$ provided that $\{n \in \omega \colon f(n) \geqslant g(n)\}$ is finite. We say that $F \subseteq \omega^{\omega}$ is bounded provided that there is a $g \in \omega^{\omega}$ such that $f <^* g$ for every $f \in F$.

The following proposition was essentially proved by Hurewicz [7], see [14]:

Proposition 2. A space X has the Hurewicz property if and only if f[X] is bounded for every continuous function $f: X \to \omega^{\omega}$.

Let $\overline{\omega} = \omega \cup \{\infty\}$ be the one point-compactification of ω . We say that $f \in \overline{\omega}^{\omega}$ is *eventually finite* provided that $\{n \in \omega : f(n) = \infty\}$ is finite. Let $\mathbb{EF} \subseteq \overline{\omega}^{\omega}$ be the set of all eventually finite functions. We say that $f: X \to \mathbb{EF}$ is *almost-finite* provided that $\{x \in X : \infty \in f(x)[\omega]\}$ is countable. We say that $F \subseteq \mathbb{EF}$ is *bounded* provided that there is a $g \in \omega^{\omega}$ such that $\{n \in \omega : f(n) \geqslant g(n)\}$ is finite for every $f \in F$. We say that $S \subseteq X$ is *co-countable* provided that $X \setminus S$ is countable.

The following theorem gives a characterization of Hurewicz λ -spaces. Its proof follows the method developed in [16].

Theorem 3. Let *X* be a space. The following conditions are equivalent:

- (a) F[X] is bounded for every continuous almost-finite function $F: X \to \mathbb{EF}$,
- (b) X is Hurewicz and X is a λ -set, and
- (c) every co-countable subset of X is Hurewicz.

The proof of Theorem 3 consists of the following three lemmas.

Lemma 4. If every co-countable subset of a space X is Hurewicz, then F[X] is bounded in \mathbb{EF} for every continuous almost-finite function $F: X \to \mathbb{EF}$.

Proof. Let $F: X \to \mathbb{EF}$ be continuous and almost-finite. For each $n \in \omega$ let $G_n = \{g \in F[X]: g(k) \neq \infty \text{ for all } k \geqslant n\}$. Notice that $X_n = F^{-1}(G_n)$ is a co-countable set for every $n \in \omega$. So, X_n is Hurewicz for every $n \in \omega$.

For each $n \in \omega$. Let $T_n : G_n \to \mathbb{EF}$ be the shift transformation $T_n(g)(k) = g(n+k)$. Since T_n is continuous for every $n \in \omega$, we have, by Proposition 2, that $T_n[F[X_n]]$ is bounded in ω^ω for each $n \in \omega$. So, $F[X_n]$ is bounded in \mathbb{EF} for each $n \in \omega$. Since $X = \bigcup_{n \in \omega} X_n$, F[X] is bounded in \mathbb{EF} . \square

Lemma 5. Let X be a space. If F[X] is bounded in \mathbb{EF} for every continuous almost-finite function $F: X \to \mathbb{EF}$, then X is a Hurewicz λ -space.

Proof. Let $f: X \to \omega^\omega$ be continuous. Since f is almost-finite, f[X] is bounded in ω^ω . By Proposition 2, X is Hurewicz. We now show that X is a λ -space. Let G be a co-countable subset of X. Let $\{x_n: n \in \omega\}$ be an enumeration of $X \setminus G$. Since X is a space, closed sets are zero sets. So, we may define for each $n \in \omega$ a continuous function $f_n: X \to \overline{\omega}$ so that $f_n^{-1}(\infty) = \{x_n\}$. Define $F: X \to \mathbb{E} \mathbb{F}$ by $F(x)(n) = f_n(x)$. Notice that F is continuous and almost-finite. Thus, F[X] is bounded in $\mathbb{E} \mathbb{F}$ by some $h \in \omega^\omega$. Notice that

$$G = \left\{ x \in X \colon \infty \notin F(x)[\omega] \right\} = F^{-1} \left(\left\{ g \in \omega^{\omega} \colon g <^* h \right\} \right).$$

Notice that $\{g \in \omega^{\omega} \colon g <^* h\}$ is an F_{σ} -subset of \mathbb{EF} . It follows that G is an F_{σ} -subset of X. Thus, X is a λ -space. \square

Lemma 6. If a space X is a Hurewicz λ -space, then F[X] is bounded in \mathbb{EF} for every continuous almost-finite function $F: X \to \mathbb{EF}$.

Proof. Let $F: X \to \mathbb{EF}$ be a continuous almost-finite function. Let $G = X \setminus E$ where $E = \{x \in X : \infty \in F(x)[\omega]\}$. Since E is countable, G is an F_{σ} . Since closed subsets of Hurewicz spaces are closed and the Hurewicz property is preserved by countable unions, G is Hurewicz. Thus, F[G] is bounded in ω^{ω} . Since F[E] is countable, it follows that F[X] is bounded in \mathbb{EF} . \square

Download English Version:

https://daneshyari.com/en/article/4661041

Download Persian Version:

https://daneshyari.com/article/4661041

Daneshyari.com