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Abstract

Regular and irregular pretopologies are studied. In particular, for every ordinal there exists a topology such that the series of
its partial (pretopological) regularizations has length of that ordinal. Regularity and topologicity of special pretopologies on some
trees can be characterized in terms of sets of intervals of natural numbers, which reduces studied problems to combinatorics.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

By a convergence we understand a relation x ∈ limF , between filters F and points x, such that F ⊂ G implies
limF ⊂ limG, and for which the principal ultrafilter of x converges to x for every point x. A convergence ζ is finer
than a convergence ξ (in symbols, ζ � ξ ) if limζ F ⊂ limξ F for each filter F . A map f from a convergence space to
another is continuous provided that f (limF) ⊂ limf (F) for every filter F .1 The class of convergences is a category
(with continuous maps as morphisms). A convergence is Hausdorff if the limit of every filter is at most a singleton.

The notion of regularity was generalized from topological to convergence spaces in two ways, by Fischer [13]
and by Grimeisen [15,16]. A convergence is regular (in the sense of Fischer) if the limit of a filter F is included in
the limit of the filter generated by the family of the adherences of the elements of F . The definitions of Fischer and
Grimeisen coincide for pseudotopological spaces, and a fortiori for pretopological spaces, which are the framework
of this paper.2

Regular convergences form a concretely reflective subcategory of the category of convergences; we denote its
reflector by R. In particular, for every convergence ξ there exists a regular convergence Rξ , which is the finest among
the regular convergences that are coarser than ξ . The convergence Rξ is the regular reflection of ξ (the regularization
of ξ ).
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1 We denote by f (F) the filter generated by {f (F ): F ∈ F}.
2 Pseudotopologies and pretopologies are subclasses of convergences; we will define them in Preliminaries.
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To our knowledge, there exists no explicit description of the filters that converge in Rξ in terms of those convergent
in ξ . It is possible however to define, explicitly and simply, a partial regularization rξ of ξ so that ξ � rξ � Rξ for
every convergence ξ , and a convergence τ is regular if and only if ξ � rξ .3 Moreover r is a concrete functor, and for
each convergence ξ there is a least ordinal α (the irregularity of ξ ) such that Rξ is equal to the αth iteration4 of r

applied to ξ .
In this paper we show that for each ordinal α there exists a Hausdorff pretopology the irregularity of which is

precisely α. Our result is more precise (and our construction is much simpler) than that of Kent and Richardson
[18,19] who proved that for every ordinal β there exists a pretopology ξ such that β is the least ordinal for which
(rω)βξ = Rξ .

We call an element x regular for a convergence ξ if x ∈ limrξ F implies x ∈ limξ F for every filter F , and irreg-
ular otherwise. We witness an interesting phenomenon of “propagation of irregularities” concerning the regularity
of elements: an element can be regular for a convergence ξ but irregular for its partial regularization rξ , which, by
construction, is “more regular” than ξ . This observation leads to a notion of irregularity spectrum.

The irregularity of x with respect to ξ is the least ordinal β such that x is regular for rβξ . The irregularity spectrum
of an element x with respect to a convergence ξ is the set of ordinals α for which x is irregular for rαξ . Consequently,
an element is irregular if and only if 0 is in its spectrum. It is amazing that for every subset A of an ordinal, one can
construct a Hausdorff pretopology such that the irregularity spectrum of an element with respect to this convergence
is precisely A.

Study of regularity (and irregularity) of some special pretopologies on sequential trees (standard pretopologies) led
us to a concept of states (sets of intervals of an ordinal). Each standard pretopology is completely determined by its
state, and the functors r,R are transferred to the space of states. In this way, each investigation concerning regularity
of such a pretopology can be reduced to a combinatorial problem concerning states.

We have observed that an element x of a pretopology of countable character 5 is irregular (thus of irregularity � 1),
then there exists a homeomorphic embedding “at x” of an irregular standard pretopology (on a tree of rank 2). On the
other hand, the fact that an element x is of irregularity 2 does not imply the existence of a homeomorphic embedding
“at x” of an irregular standard pretopology on a tree of rank 3.

This discovery led us to a concept of ramified standard pretopologies and to our main result that if x is an element
of finite irregularity of a pretopology of countable character, then there is a homeomorphic embedding “at x” of a
ramified standard pretopology of the same irregularity.

2. Preliminaries

Families F ,H (of subsets of a given set) mesh (in symbols, F #H) if F ∩H �= ∅ for every F ∈F and each H ∈H.
A systematic use of the operation # in conjunction with other operations, like that of contour, has led to a versatile
calculus (see, for example, [8,9,3,11,4]). The operation # is related to the notion of grill H# of a family H, which was
defined by Choquet [1] as H# = ⋂

H∈H{G: G ∩ H �= ∅} (denoted also sec(H) in [17]); of course,

F #H ⇐⇒ F ⊂ H# ⇐⇒ H ⊂ F#.

The adherence of a filter H with respect to a convergence ξ is defined by

adhξ H =
⋃
F#H

limξ F .

In particular, adhξ H denotes the adherence of the principal filter of H . If F is a filter on the underlying set |ξ | of a

convergence ξ , then the symbol adh�
ξ F denotes the filter generated by {adhξ F : F ∈ F}. The infimum Vξ (x) of all

filters that converge to x, is called the vicinity filter of x with respect to ξ .
A convergence ξ is regular (in the sense of Fischer) if

limξ F ⊂ limξ

(
adh�

ξ F
)

(2.1)

3 Kent and Richardson [18,19] introduced another functor of partial regularization, which in our terminology is equal to rω .
4 To be defined later.
5 Also called first-countable.
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