

Available online at www.sciencedirect.com

Topology and its Applications 153 (2006) 2118-2123

Topology and its Applications

www.elsevier.com/locate/topol

A new bound on the cardinality of homogeneous compacta

Ramiro de la Vega

Departamento de Matemáticas, Universidad de los Andes, Carrera 1 # 18A-10, Bogotá, Colombia Received 1 February 2005; received in revised form 12 August 2005

Abstract

We show (in ZFC) that if X is a compact homogeneous Hausdorff space then $|X| \leq 2^{t(X)}$, where t(X) denotes the tightness of X. It follows that under *GCH* the character and the tightness of such a space coincide.

© 2005 Elsevier B.V. All rights reserved.

MSC: primary 54A25; secondary 03E35

Keywords: Countable tightness; Elementary submodels; Homogeneous space

1. Introduction

A space X is said to have *countable tightness* (in symbols $t(X) = \aleph_0$) if whenever $A \subseteq X$ and $x \in \overline{A}$, there is a countable $B \subseteq A$ such that $x \in \overline{B}$. A space X is *homogeneous* if for every $x, y \in X$ there is a homeomorphism f of X onto X with f(x) = y. It is known that any compact space of countable tightness contains a point with character at most 2^{\aleph_0} ; if the space is also homogeneous then it follows that $|X| \leq 2^{2^{\aleph_0}}$. In [1], Arkhangel'skiĭ asked if in fact $|X| \leq 2^{\aleph_0}$ for any such space; he later conjectured a positive answer to this question (see [4]). A well-known result of A. Dow (see [5]) states that under *PFA* any compact space of countable tightness contains a point of countable character; from this it follows that

E-mail address: rade@uniandes.edu.co (R. de la Vega).

^{0166-8641/\$ –} see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2005.08.005

Arkhangel'skiĭ's conjecture is true under *PFA*. A related result of Arkhangel'skiĭ (see [1, 2]) states that if X is a sequential (and hence of countable tightness) compact homogeneous space then $|X| \leq 2^{\aleph_0}$.

The main goal of this paper is to give a proof in ZFC of Arkhangel'skii's conjecture. In fact we will prove (Theorem 3.2) that the same is true for higher cardinals (i.e. $|X| \leq 2^{t(X)}$ for any compact homogeneous X). This generalizes a result of M. Ismail (see [6]), who showed that $|X| \leq 2^{t(X)}$ for compact homogeneous X satisfying the countable chain condition. As a corollary of our result we also confirm a conjecture of I. Juhász, P. Nyikos and Z. Szentmiklóssy (see [7]), stating that it is consistent that every homogeneous T_5 compactum is first countable.

Our main tool will be the "Elementary Submodels technique": Given a topological space (X, τ) , one lets M be an elementary submodel of $H(\theta)$ (the set of all sets of hereditary cardinality less than θ) for a "large enough" regular cardinal θ . Usually one asks for M to be "small" and to contain X and τ as elements. Then one uses closure properties of M to get results about $X \cap M$, $\tau \cap M$ and ultimately about (X, τ) . A model M is said to be κ -closed if any κ -sequence of elements of M is in M (i.e. $M^{\kappa} \subseteq M$). For more details and a good introduction to the technique see [5]. Let us just say that in each specific application, one takes θ large enough for $H(\theta)$ to contain all sets of interest in the context under discussion. In this sense we will just say that $M \prec V$. In Section 2 we prove some basic facts in the context of elementary submodels of compact spaces with $t(X) \leq \kappa$; we also give an answer (Theorem 2.2) to a question of L.R. Junqueira and F.D. Tall.

We assume all spaces to be Hausdorff. If $A \subseteq X$ we write \overline{A} for the topological closure of A in X. As usual $[X]^{\kappa}$ is the set of all subsets of X of cardinality κ and $[X]^{\leq \kappa}$ is the set of all subsets of X of size no more than κ . A set $A \subseteq X$ is called a G_{κ} -set or a G_{κ} -subset of X if it is the intersection of no more than κ open subsets of X.

2. Elementary submodels

Let κ be an infinite cardinal and fix a compact space (X, τ) with $t(X) \leq \kappa$. Fix a κ -closed $M \prec V$ with $X, \tau \in M$. Let $Z = \overline{X \cap M} \subseteq X$ with the subspace topology.

One of the main goals of this section is to show that Z is a retract of X. The following result suggests what the retraction is going to be.

Lemma 2.1. For every $x \in X$ there is a $q_x \in Z$ such that for all $U \in \tau \cap M$ either $q_x \notin U$ or $x \in U$.

Proof. Fix $x \in X$ and assume there is not such a q_x . Then for each $q \in Z$ we can fix a $U_q \in \tau \cap M$ such that $q \in U_q$ and $x \notin U_q$. Since Z is compact we get that $Z \subseteq \bigcup_{q \in Q} U_q$ for some finite $Q \subseteq Z$. On the other hand, $x \notin \bigcup_{q \in Q} U_q \in M$ so by elementarity there is an $x' \in (X \cap M) \setminus \bigcup_{q \in Q} U_q$ which is impossible. \Box

Just by elementarity and the fact that X is Hausdorff, it is immediate that $\tau \cap M$ separates points in $X \cap M$. We prove now that in fact $\tau \cap M$ separates points in Z.

Download English Version:

https://daneshyari.com/en/article/4661408

Download Persian Version:

https://daneshyari.com/article/4661408

Daneshyari.com