
Annals of Pure and Applied Logic 168 (2017) 19–36

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

A classification of orbits admitting a unique invariant measure

Nathanael Ackerman a, Cameron Freer b,∗, Aleksandra Kwiatkowska c,d, 
Rehana Patel e

a Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
b Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA
c Mathematical Institute, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
d Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
e Franklin W. Olin College of Engineering, Needham, MA 02492, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 July 2016
Accepted 15 August 2016
Available online 24 August 2016

MSC:
03C98
37L40
60G09
20B27

Keywords:
Invariant measure
High homogeneity
Unique ergodicity

We consider the space of countable structures with fixed underlying set in a given 
countable language. We show that the number of ergodic probability measures on 
this space that are S∞-invariant and concentrated on a single isomorphism class 
must be zero, or one, or continuum. Further, such an isomorphism class admits 
a unique S∞-invariant probability measure precisely when the structure is highly 
homogeneous; by a result of Peter J. Cameron, these are the structures that are 
interdefinable with one of the five reducts of the rational linear order (Q, <).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A countable structure in a countable language can be said to admit a random symmetric construction 
when there is a probability measure on its isomorphism class (of structures having a fixed underlying set) 
that is invariant under the logic action of S∞. Ackerman, Freer, and Patel [1] characterized those structures 
admitting such invariant measures. In this paper, we further explore this setting by determining the possible 
numbers of such ergodic invariant measures, and by characterizing when there is a unique invariant measure.

A dynamical system is said to be uniquely ergodic when it admits a unique, hence necessarily ergodic, 
invariant measure. In most classical ergodic-theoretic settings, the dynamical system consists of a measure 
space along with a single map, or at most a countable semigroup of transformations; unique ergodicity has 
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been of longstanding interest for such systems. In contrast, unique ergodicity for systems consisting of a 
larger space of transformations (such as the automorphism group of a structure) has been a focus of more 
recent research, notably that of Glasner and Weiss [12], and of Angel, Kechris, and Lyons [2].

When studying continuous dynamical systems, one often considers minimal flows, i.e., continuous actions 
on compact Hausdorff spaces such that each orbit is dense; [2] examines unique ergodicity in this setting. 
In the present paper, we are interested in unique ergodicity of actions where the underlying space need not 
be compact and there is just one orbit: We characterize when the logic action of the group S∞ on an orbit 
is uniquely ergodic.

Any transitive S∞-space is isomorphic to the action of S∞ on the isomorphism class of a countable 
structure, restricted to a fixed underlying set. The main result of [1] states that such an isomorphism class 
admits at least one S∞-invariant measure precisely when the structure has trivial definable closure. Here we 
characterize those countable structures whose isomorphism classes admit exactly one such measure, and show 
via a result of Peter J. Cameron that the five reducts of (Q, <) are essentially the only ones. Furthermore, if 
the isomorphism class of a countable structure admits more than one S∞-invariant measure, it must admit 
continuum-many ergodic such measures.

1.1. Motivation and main results

In this paper we consider, for a given countable language L, the collection of countable L-structures 
having the natural numbers N as underlying set. This collection can be made into a measurable space, 
denoted StrL, in a standard way, as we describe in Section 2.

The group S∞ of permutations of N acts naturally on StrL by permuting the underlying set of elements. 
This action is known as the logic action of S∞ on StrL, and has been studied extensively in descriptive 
set theory. For details, see [4, §2.5] or [11, §11.3]. Observe that the S∞-orbits of StrL are precisely the 
isomorphism classes of structures in StrL.

By an invariant measure on StrL, we will always mean a Borel probability measure on StrL that is 
invariant under the logic action of S∞. We are specifically interested in those invariant measures on StrL
that assign measure 1 to a single orbit, i.e., the isomorphism class in StrL of some countable L-structure M. 
In this case we say that the orbit of M admits an invariant measure, or simply that M admits an invariant 
measure.

When a countable structure M admits an invariant measure, this measure can be thought of as providing 
a symmetric random construction of M. The main result of [1] describes precisely when such a construction 
is possible: A structure M ∈ StrL admits an invariant measure if and only if definable closure in M is 
trivial, i.e., the pointwise stabilizer in Aut(M) of any finite tuple fixes no additional elements. But even 
when there are invariant measures concentrated on the orbit of M, it is not obvious how many different 
ones there are.

If an orbit admits at least two invariant measures, there are trivially always continuum-many such 
measures, because a convex combination of any two gives an invariant measure on that orbit, and these 
combinations yield distinct measures. It is therefore useful to count instead the invariant measures that are 
not decomposable in this way, namely the ergodic ones. It is a standard fact that the invariant measures 
on StrL form a simplex in which the ergodic invariant measures are precisely the extreme points, i.e., those 
that cannot be written as a nontrivial convex combination of invariant measures. Moreover, every invariant 
measure is a mixture of these extreme invariant measures. (For more details, see [16, Lemma A1.2 and 
Theorem A1.3] and [22, Chapters 10 and 12].) Thus when counting invariant measures on an orbit, the 
interesting quantity to consider is the number of ergodic invariant measures.

Many natural examples admit more than one invariant measure. For instance, consider the Erdős–Rényi 
[7] construction G(N, p) of the Rado graph, a countably infinite random graph in which edges have indepen-
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