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A Martin-Löf test U is universal if it captures all non-Martin-Löf random sequences, 
and it is optimal if for every ML-test V there is a c ∈ ω such that ∀n(Vn+c ⊆ Un). 
We study the computational differences between universal and optimal ML-tests 
as well as the effects that these differences have on both the notion of layerwise 
computability and the Weihrauch degree of LAY, the function that produces a bound 
for a given Martin-Löf random sequence’s randomness deficiency. We prove several 
robustness and idempotence results concerning the Weihrauch degree of LAY, and we 
show that layerwise computability is more restrictive than Weihrauch reducibility to 
LAY. Along similar lines we also study the principle RD, a variant of LAY outputting 
the precise randomness deficiency of sequences instead of only an upper bound 
as LAY.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hoyrup and Rojas [15] fix a universal Martin-Löf test and define a function to be layerwise computable
if it is computable on Martin-Löf random inputs when given what essentially amounts to a bound for 
the input’s randomness deficiency as advice. The ML-test U = (Un)n∈ω that Hoyrup and Rojas use to 
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define layerwise computability has the special property that for every ML-test V = (Vn)n∈ω there is a 
c ∈ ω such that ∀n(Vn+c ⊆ Un). Miyabe [19] studies these special, so called optimal, tests. If U and V
are two optimal ML-tests, then it is straightforward to see that the notion of layerwise computability is 
the same when defined via U as it is when defined via V. However, the following example (essentially due 
to Miyabe, though with a slightly different proof) shows that there are universal ML-tests that are not 
optimal.

Example 1.1. Let U be any universal ML-test. Define a test V via Vn =
⋂

i≤n Un for all n ∈ ω, thus 
making the test a descending chain. V is also a universal ML-test, so λ(Vn) �= 0 for all n. On the other 
hand limn λ(Vn) = 0. Therefore there are infinitely many n with λ(Vn+1) < λ(Vn). Assume for the sake of 
argument that there are infinitely many n with λ(V2n+1) < λ(V2n), and let I be the set of these n. (The 
case in which there are infinitely many n with λ(V2n) < λ(V2n−1) is analogous.)

Define an ML-test W via Wn = V2n+1 for all n. Clearly W meets the effectivity and measure conditions 
for being an ML-test. As 

⋂
n∈ω Wn =

⋂
n∈ω Vn =

⋂
n∈ω Un, W is also a universal ML-test.

Fix any c ∈ ω. For any n ∈ I with n ≥ c, we have that

Un+c ⊇ Vn+c ⊇ V2n � V2n+1 = Wn,

which implies that Un+c � Wn.
That is, for every c there are infinitely many n with Un+c � Wn. Thus W is a universal ML-test that is 

not optimal. �
Miyabe [19] obtains a compelling computational difference between optimal ML-tests and universal ML-

tests: by a result of Merkle, Mihailović, and Slaman [18], there is a universal ML-test U and a left-c.e. real 
α such that ∀n(λ(Un) = 2−nα). Miyabe proves that no optimal ML-test is of this form.

This article presents further differences between optimal ML-tests and universal ML-tests. If U is an 
optimal ML-test, then for every ML-test there trivially is a function f (in fact, a computable function f) 
such that ∀n(Vf(n) ⊆ Un). In Section 3, we show that if U is universal but not optimal, then such an f need 
not exist; and furthermore that there exist universal ML-tests U and V such that functions f as above do 
indeed exist, but such that all of these f are difficult to compute.

In Section 4, we ask if the notion of layerwise computability remains the same if we allow it to be defined 
using any, possibly non-optimal, universal ML-test. The answer is negative. It is possible to construct 
universal ML-tests that distort the randomness deficiencies assigned by a given ML-test quite chaotically. 
Likewise, we study the difference between the class of layerwise computable functions and the class of exactly 
layerwise computable functions, where we say that a function on MLR is exactly layerwise computable if it 
is uniformly computable given an ML-random sequence and its randomness deficiency (not merely an upper 
bound for its randomness deficiency). We show that both classes are different by identifying a function that 
is exactly layerwise computable but not layerwise computable.

Brattka, Gherardi and Hölzl [8] define and study the Weihrauch degree of LAY, a function representing 
the mathematical task of determining an upper bound for the randomness deficiency of a given MLR se-
quence. In particular, they investigate how LAY interacts with MLR—the principle that generates sequences 
that are ML-random relative to its input—and the principle CN—the choice principle on natural numbers. 
We continue the study of LAY in Section 5, where we show that, unlike the notion of layerwise computability, 
the Weihrauch degree of LAY does not depend on the choice of the universal ML-test used to define it. More-
over, we show that, up to Weihrauch degree, the problem of exactly determining a ML-random sequence’s 
randomness deficiency is equivalent to merely determining an upper bound for its randomness deficiency. 
We show that the Weihrauch degree of LAY enjoys several idempotence properties, and we investigate the 
complexity of sets that can be reduced to LAY.
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