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The dimension of a point x in Euclidean space (meaning the constructive Hausdorff 
dimension of the singleton set {x}) is the algorithmic information density of x. 
Roughly speaking, this is the least real number dim(x) such that r × dim(x)
bits suffice to specify x on a general-purpose computer with arbitrarily high 
precision 2−r. The dimension spectrum of a set X in Euclidean space is the subset 
of [0, n] consisting of the dimensions of all points in X.
The dimensions of points have been shown to be geometrically meaningful (Lutz 
2003 [16], Hitchcock 2005 [12]), and the dimensions of points in self-similar fractals 
have been completely analyzed (Lutz and Mayordomo 2008 [18]). Here we begin 
the more challenging task of analyzing the dimensions of points in random fractals. 
We focus on fractals that are randomly selected subfractals of a given self-similar 
fractal. We formulate the specification of a point in such a subfractal as the outcome 
of an infinite two-player game between a selector that selects the subfractal and a 
coder that selects a point within the subfractal. Our selectors are algorithmically 
random with respect to various probability measures, so our selector–coder games 
are, from the coder’s point of view, games against nature.
We determine the dimension spectra of a wide class of such randomly selected 
subfractals. We show that each such fractal has a dimension spectrum that is a closed 
interval whose endpoints can be computed or approximated from the parameters 
of the fractal. In general, the maximum of the spectrum is determined by the 
degree to which the coder can reinforce the randomness in the selector, while the 
minimum is determined by the degree to which the coder can cancel randomness 
in the selector. This constructive and destructive interference between the players’ 
randomnesses is somewhat subtle, even in the simplest cases. Our proof techniques 
include van Lambalgen’s theorem on independent random sequences, measure 
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preserving transformations, an application of network flow theory, a Kolmogorov 
complexity lower bound argument, and a nonconstructive proof that this bound is 
tight.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractals are inherently information-theoretic objects. The dimension n of a Euclidean space Rn is a 
measure of the amount of information (number of real numbers) that suffices to specify a point in Rn

in a natural way. Similarly, the fact that the Hausdorff dimension of the Cantor “middle-thirds” set C is 
dimH(C) = log 2/ log 3 ≈ 0.63 tells us that it only takes about 0.63 of a real number to specify a point in C
in a natural way. That is, roughly (0.63)r bits suffice to specify the first r bits of a point in C. Intuitively, 
then, the Hausdorff (fractal) dimension dimH(C) is an upper bound on the “information densities” of points 
in the fractal C.

Of course some points in the Cantor set can be specified even more concisely. The theory of constructive 
dimension, a computability-theoretic extension of Hausdorff dimension developed in the present century [16], 
assigns each individual point x in a Euclidean space Rn a dimension dim(x) ∈ [0, n] that is a measure of its 
information density. This notion of dimension has been shown to be geometrically meaningful. For example, 
if X ⊆ Rn is a “reasonably simple” set, in the sense that X is a union of Π0

1 (i.e., computably closed) sets, 
then

dimH(X) = sup
x∈X

dim(x), (1.1)

which is a nonclassical, pointwise characterization of the classical Hausdorff dimensions of such sets [16,12].
The self-similar fractals form the best known and best understood class of fractals. (See Section 2.3 for 

a detailed review of self-similar fractals.) Each self-similar fractal F is given by an iterated function system 
(IFS) S = (S1, . . . , Sm−1) of contracting similarities Si. A well-known theorem of Moran [20] states that

dimH(F ) = sdim(F ) (1.2)

holds for every self-similar fractal F , where sdim(F ) is the similarity dimension of F . Much of the importance 
of this theorem arises from the fact that sdim(F ) is easy to compute from the contraction ratios c0, . . . , cm−1
of the respective similarities S1, . . . , Sm−1. That is, (1.2) gives an easy way to compute the Hausdorff 
dimensions of self-similar fractals.

The dimensions of points in computably self-similar fractals (those for which S1, . . . , Sm−1 are com-
putable) have now been completely analyzed. If F is a self-similar fractal as above, then each point x ∈ F

is naturally given by at least one coding sequence U ∈ Σ∞
m , where Σm = {0, . . . , m − 1}. Intuitively, x is 

the result of a limiting process in which, at each stage t ∈ N, we apply the contracting similarity SU [t]. 
The main theorem of [18] says that, if F is computably self-similar, then, for each x ∈ F and each coding 
sequence U for x,

dim(x) = sdim(F )dimπS (U), (1.3)

where dimπS (U) ∈ [0, 1] is the dimension of the sequence U ∈ Σ∞
m with respect to the similarity probability 

measure πS on Σm, which arises from the IFS S in a natural manner. (This is a constructive version of 
Billingsley dimension [3] introduced in [18].)
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