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The first order modal logic FOS4 is a combination of the axioms and rules of 
inference of propositional S4 and classical first order logic with identity. We give 
a topological and measure-theoretic semantics for FOS4 with expanding domains. 
The latter extends the measure-theoretic semantics for propositional S4 introduced 
by Scott and studied in [3,6], and [8]. The main result of the paper is that FOS4
is complete for the measure-theoretic semantics with countable expanding domains. 
More formally, FOS4 is complete for the Lebesgue measure algebra, M, or algebra of 
Borel subsets of the real line modulo sets of measure zero, with countable expanding 
domains. A corollary to the main result is that first order intuitionistic logic FOH is 
complete for the frame of open elements in M with countable expanding domains. 
We also show that FOS4 is not complete for the real line or the infinite binary tree 
with limits with countable expanding domains.

© 2014 Published by Elsevier B.V.

1. Introduction

It is well-known that the propositional modal logic S4 can be interpreted in topological spaces. In the 
topological semantics, formulas are assigned to subsets of a fixed topological space, and the �-modality 
is interpreted by the topological interior. As early as 1944, McKinsey and Tarski [9] showed that S4 is 
complete for the real line, the rationals, Cantor space, and many ‘nice’ metric topologies.1 In recent years, 
Scott showed that in addition to the topological semantics, we can interpret S4 in the Lebesgue measure 
algebra, or algebra of Borel subsets of the real line modulo sets of measure zero. Here each propositional 
variable is assigned to an element of the algebra, instead of to a subset of a topological space. Conjunctions, 
disjunctions and negations are interpreted by Boolean meets, joins and complements respectively, and we 
can construct an interior operator on the algebra that interprets the �-modality. The measure-theoretic 

1 These are special cases of McKinsey and Tarski’s theorem in [9] that S4 is complete for any dense-in-itself separable metrizable 
space. Rasiowa and Sikorski improve the result in [10] showing that S4 is complete for any dense-in-itself metrizable space.
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semantics (as I’ll refer to it) is in some ways reminiscent of the older topological semantics, particularly of 
topological interpretations over the real line. It was shown in [6] and [3] that S4 is complete for the Lebesgue 
measure algebra.2

Thus when it comes to propositional S4 we have many nice completeness theorems in both the topological 
and measure-theoretic semantics. But once we pass to quantified or first order modal logics, the landscape 
changes quite dramatically. In the topological semantics for quantified S4, we can think of each point in a 
topological space as carrying a first order model. Formulas are true or false at points in the topological space, 
and true for the model as a whole if true throughout the space. The topological semantics for quantified 
modal logics has been studied far less than its propositional counterpart, but what little we do know shows 
that completeness results for particular spaces are harder to come by. Take QS4, the quantified modal 
logic that combines the axioms and rules of inference of propositional S4 with the identity-free fragment 
of classical first order logic. It was shown by Rasiowa and Sikorski [10] that QS4 is not complete for any 
Baire space with countable constant domains. This result was recently extended by Kremer [5], who shows 
that QS4 is not complete for any locally connected space with arbitrary constant domains. In particular, 
QS4 is not complete for the real line with arbitrary constant domains. Perhaps the only ‘nice’ completeness 
result for a particular topological space is Kremer’s proof in [5] that QS4 is complete for the rationals with 
countable constant domains.

Now Rasiowa and Sikorski [10], and Kremer [5] all study constant domain semantics for identity-free 
quantified modal languages. The focus of the present paper is on first order modal languages that contain 
identity, and the logic FOS4, which combines the axioms and rules of inference of propositional S4 with those 
of classical first order logic. In order to give a semantics for FOS4, we need to consider models in which the 
domain of individuals varies across points in space. Indeed, in the more familiar Kripke (or frame) semantics 
for quantified modal logics it is well known that there are many choices to be made as to whether and how 
domains can vary across possible worlds. In an ‘expanding domain’ semantics, the domain at a world is a 
subset of the domain of related worlds (equivalently, individuals can come into existence as one moves along 
the accessibility relation, but cannot go out of existence—hence ‘expanding’).3 Are there analogs for this in 
the topological or measure-theoretic semantics? At first sight, it is not clear how there could be. The very 
idea of expanding domains is defined in terms of the accessibility relation in Kripke frames, a relation that 
has no place in the topological, much less algebraic semantics. But in fact there are natural analogs in both 
cases. Just as the accessibility relation interprets modality in Kripke semantics, so the topological interior 
or open sets interpret modality in the topological semantics. In the expanding domain Kripke semantics, 
we require that an object which exists at a world w exists at all worlds downstream from w; analogously, 
in the expanding domain topological semantics we require that an object that exists at a point x exists 
throughout an open neighborhood of x. (A similar constraint can be introduced in the algebraic—hence 
also measure-theoretic—semantics but we save the details for Section 8.) As we’ll see below, the expanding 
domain topological semantics for FOS4 generalizes the expanding domain Kripke semantics for FOS4 in 
much the same way that the topological semantics for propositional S4 generalizes Kripke semantics for 
propositional S4.4

2 The measure-theoretic semantics is an important special case of the algebraic semantics, where the algebra used to interpret 
the modal language carries a countably additive measure.
3 Constraints on how individuals may vary across possible worlds are tied to the verification of the Barcan and converse Barcan 

formulas. The expanding domain frame semantics verifies the converse Barcan formula, but not the Barcan formula. The constant 
domain semantics verifies both. See Section 3. It is interesting to note that the constant domain topological semantics does not
verify the Barcan formula, hence introducing varying domains in the topological semantics is not necessary for the purpose of 
refuting that formula (it is necessary, however, for giving an adequate semantics for FOS4).
4 It should be mentioned that there is an alternative ‘topological sheaf’ semantics for first order modal logics introduced by 

Awodey and Kishida in [1], which also extends the topological semantics for propositional S4. In the sheaf semantics, topological 
sheaves are constructed over a topological space in order to supply these spaces with variable domains. (A topological sheaf over X
is a topological space F together with a local homeomorphism π : F → X. Here F is a space of individuals, and an individual d ∈ F
‘lives’ at the point π(d) ∈ X.) In the sheaf semantics, individuals that exist at a world do not exist at any other world, but may 
have ‘counterparts’ in other worlds. Although the machinery of the sheaf semantics is quite different from that of the expanding 
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