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The famous Gödel incompleteness theorem states that for every consistent,
recursive, and sufficiently rich formal theory T there exist true statements that
are unprovable in T . Such statements would be natural candidates for being added
as axioms, but how can we obtain them? One classical (and well studied) approach
is to add to some theory T an axiom that claims the consistency of T . In this paper
we discuss another approach motivated by Chaitin’s version of Gödel’s theorem
where axioms claiming the randomness (or incompressibility) of some strings are
probabilistically added, and show that it is not really useful, in the sense that this
does not help us prove new interesting theorems. This result answers a question
recently asked by Lipton. The situation changes if we take into account the size of
the proofs: randomly chosen axioms may help making proofs much shorter (unless
NP = PSPACE).
We then study the axiomatic power of the statements of type “the Kolmogorov
complexity of x exceeds n” (where x is some string, and n is some integer) in
general. They are Π1 (universally quantified) statements of Peano arithmetic. We
show that by adding all true statements of this type, we obtain a theory that
proves all true Π1-statements, and also provide a more detailed classification. In
particular, as Theorem 7 shows, to derive all true Π1-statements it is enough to add
one statement of this type for each n (or even for infinitely many n) if strings are
chosen in a special way. On the other hand, one may add statements of this type
for most x of length n (for every n) and still obtain a weak theory. We also study
other logical questions related to “random axioms”.
Finally, we consider a theory that claims Martin-Löf randomness of a given infinite
binary sequence. This claim can be formalized in different ways. We show that
different formalizations are closely related but not equivalent, and study their
properties.
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1. Introduction

We assume that the reader is familiar with the notion of Kolmogorov complexity and Martin-Löf random-
ness (see [14,16,7] for background information about Kolmogorov complexity and related topics), but since
for our purposes this notion needs to be expressed in formal arithmetic, we recall some basic definitions.
The Kolmogorov complexity C(x) of a binary string x is defined as the minimal length of a program (with-
out input) that outputs x and terminates. This definition depends on a programming language, and one
should choose one that makes complexity minimal up to O(1) additive term. Technically, there exist differ-
ent versions of Kolmogorov complexity. Prefix complexity K(x) assumes that programs are self-delimiting.
We consider plain complexity C(x) where no such assumptions are made; any partial function D can be
used as an “interpreter” of a programming language, so D(p) is considered as an output of program p, and
CD(x) is defined as the minimal length of p such that D(p) = x. Then some optimal D is fixed (such that
CD is minimal up to O(1) additive term), and CD(x) is called (plain Kolmogorov) complexity of x and
denoted C(x). Most strings of length n have complexity close to n. More precisely, the fraction of n-bit
strings that have complexity less than n − c, is at most 2−c. In particular, there exist strings of arbitrary
high complexity.

However, as G. Chaitin pointed out in [5], the situation changes if we look for strings of provably high
complexity. More precisely, we are looking for strings x and numbers n such that the statement “C(x) > n”
(properly formalized in arithmetic) is provable in Peano arithmetic PA. Chaitin showed that there is a
constant c such that no statement “C(x) > n” is provable in PA for n > c. Chaitin’s argument is a version
of Berry’s paradox: Assume that for every integer k we can find some string x such that “C(x) > k” is
provable; let xk be the first string with this property in the order of enumeration of all proofs; this definition
provides a program of size O(log k) that generates xk, which is impossible for large k since “C(xk) > k” is
provable in PA and therefore true (in the standard model).1

This leads to a natural idea. Toss a coin n times to obtain a string x of length n, and consider the
statement “C(x) ≥ n − 1000”. This statement is true unless we are extremely unlucky. The probability of
being unlucky is less than 2−1000. In natural sciences we are accustomed to identify this with impossibility. So
we can add this statement and be almost sure that it is true; if n is large enough, we get a true non-provable
statement and could use it as a new axiom. We can even repeat this procedure several times: if the number
of iterations m is not astronomically large, 2−1000 m is still astronomically small.

Now the question: Can we obtain a richer theory in this way and get some interesting consequences, still
being practically sure that they are true? This is in substance what Lipton asked in [13] (Shen [17] also
discussed similar issues). In the next section, we will answer this question and show:

• yes, this is a safe way of enriching PA (Theorem 1);
• yes, we can get a stronger theory this way (Chaitin’s theorem), but
• no, we cannot prove anything interesting this way (Theorem 3).

So the answer to the main question is negative; however, as we show in Section 2.3 (Theorem 4), these
“random axioms” do give some advantages: while they cannot help us to prove new interesting statements,
they can significantly shorten some proofs (unless PSPACE = NP).

1 Another proof of the same result shows that Kolmogorov complexity is actually not very essential here. By a standard fixed-point
argument one can construct a program p (without input) such that for every program q (without input) the assumption “q is
equivalent to p” (i.e., q produces the same output as p if p terminates, and q does not terminate if p does not terminate) is
consistent with PA. If p has length k, for every x we may assume without contradiction that p produces x, so one cannot prove
that C(x) exceeds k.
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