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In algorithmic randomness, when one wants to define a randomness notion with
respect to some non-computable measure λ, a choice needs to be made. One
approach is to allow randomness tests to access the measure λ as an oracle
(which we call the “classical approach”). The other approach is the opposite one,
where the randomness tests are completely effective and do not have access to
the information contained in λ (we call this approach “Hippocratic”). While the
Hippocratic approach is in general much more restrictive, there are cases where the
two coincide. The first author showed in 2010 that in the particular case where the
notion of randomness considered is Martin-Löf randomness and the measure λ is a
Bernoulli measure, classical randomness and Hippocratic randomness coincide. In
this paper, we prove that this result no longer holds for other notions of randomness,
namely computable randomness and stochasticity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In algorithmic randomness theory we are interested in which almost sure properties of an infinite sequence
of bits are effective or computable in some sense. Martin-Löf defined randomness with respect to the uniform
fair-coin measure μ on 2ω as follows.

A sequence X ∈ 2ω is Martin-Löf random if we have X /∈
⋂

n∈N Un for every sequence of uniformly Σ0
1

(or effectively open) subsets of 2ω such that μ(Un) ≤ 2−n.

Now if we wish to consider Martin-Löf randomness for a Bernoulli measure μp (that is, a measure such
that the ith bit is the result of a Bernoulli trial with parameter p ∈ [0, 1]), we have two possible ways to
extend the previous definition.
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The first option is to consider p as an oracle (with an oracle p we can compute μp) and relativize everything
to this oracle. Then X is μp-Martin-Löf random if for every sequence (Un)n∈N of uniformly Σ0

1 [p] sets such
that μp(Un) ≤ 2−n we have X /∈

⋂
n∈N Un. We will call this approach the classical1 notion of Martin-Löf

randomness relative to μp.
Another option is to keep the measure μp “hidden” from the process which describes the sequence (Un).

One can merely replace μ by μp in Martin-Löf’s definition but still require (Un) to be uniformly Σ0
1 in the

unrelativized sense. This notion of randomness was introduced by Kjos-Hanssen [7] who called it Hippocratic
randomness; Bienvenu, Doty and Stephan [2] used the term blind randomness.

Kjos-Hanssen showed that for Bernoulli measures, Hippocratic and classical randomness coincide in the
case of Martin-Löf randomness. Bienvenu, Gács, Hoyrup, Rojas and Shen [3] extended Kjos-Hanssen’s result
to other classes of measures. Here we go in a different direction and consider weaker randomness notions,
such as computable randomness and stochasticity. We discover the contours of a dividing line for the type of
betting strategy that is needed in order to render the probability distribution superfluous as a computational
resource.

We view statistics as the discipline concerned with determining the underlying probability distribution
μp by looking at the bits of a random sequence. In the case of Martin-Löf randomness it is possible to
determine p ([7]), and therefore Hippocratic randomness and classical randomness coincide. In this sense,
Martin-Löf randomness is sufficient for statistics to be possible, and it is natural to ask whether smaller
amounts of randomness, such as computable randomness, are also sufficient.

Notation. Our notation generally follows Nies’ monograph [13]. We write 2n for {0, 1}n, and for sequences
σ ∈ 2≤ω we will also use σ to denote the real with binary expansion 0.σ, that is, the real

∑∞
i=1 σ(i)2−i.

We use ε to denote the empty word, σ(n) for the nth element of a sequence and σ � n for the sequence
formed by the first n elements. For sequences ρ, σ we write σ ≺ ρ if σ is a proper prefix of ρ and denote the
concatenation of σ and ρ by σ.ρ or simply σρ. Throughout the paper we set n′ = n(n− 1)/2.

1.1. Hippocratic martingales

Formally a martingale is a function M : 2<ω → R≥0 satisfying

M(σ) = M(σ0) + M(σ1)
2 .

Intuitively, such a function arises from a betting strategy for a fair game played with an unbiased coin (a
sequence of Bernoulli trials with parameter 1/2). In each round of the game we can choose our stake, that
is, how much of our capital we will bet, and whether we bet on heads (1) or tails (0). A coin is tossed, and
if we bet correctly we win back twice our stake.

Suppose that our betting strategy is given by some fixed function S of the history σ of the game up
to that point. Then it is easy to see that the function M(σ) giving our capital after a play σ satisfies the
above equation. On the other hand, from any M satisfying the equation we can recover a corresponding
strategy S.

More generally, consider a biased coin which comes up heads with probability p ∈ (0, 1). In a fair game
played with this coin, we would expect to win back 1/p times our stake if we bet correctly on heads, and

1 The classical approach has actually two approaches. Reimann and Slaman [14, arXiv:0802.2705, Definition 3.2.] defined a real
x to be μ-random if, for some oracle z computing μ, the real x is μ-random relative to z. Levin [9] and Gács [6] use a uniform test,
which is a left-c.e. function u : 2ω × M(2ω) → [0,∞] such that

∫
u(x, μ)dμ ≤ 1 for all μ where M(2ω) is the space of probability

measures on 2ω. Since there is a universal uniform test u0, define x to be μ-random if u0(x, μ) < ∞. Day and Miller [4] showed
that these approaches actually coincide.
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