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Assume that the problem P0 is not solvable in polynomial time. Let T be a first-
order theory containing a sufficiently rich part of true arithmetic. We characterize
T ∪ {ConT } as the minimal extension of T proving for some algorithm that it decides
P0 as fast as any algorithm B with the property that T proves that B decides P0.
Here, ConT claims the consistency of T . As a byproduct, we obtain a version of
Gödel’s Second Incompleteness Theorem. Moreover, we characterize problems with
an optimal algorithm in terms of arithmetical theories.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

By Gödel’s Second Incompleteness Theorem a consistent, computably enumerable and sufficiently strong
first-order theory T cannot prove its own consistency ConT . In other words, T∪{ConT } is a proper extension
of T .

In Bounded Arithmetic one studies the complexity of proofs in terms of the computational complexity of
the concepts involved in the proofs (see e.g. [1, Introduction]). Stronger theories allow reasoning with more
complicated concepts. For example, a computational problem may be solvable by an algorithm whose proof
of correctness needs tools not available in the given theory; moreover, stronger theories may know of faster
algorithms solving the problem. When discussing these issues with the authors, Sy-David Friedman asked
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whether T ∪ {ConT } can be characterized in this context as a minimal extension of T . We could prove the
following result (all terms will be defined in the paper).

Theorem 1. Let P0 be a decidable problem which is not decidable in polynomial time. Then there is a finite
true arithmetical theory T0 and a computable function F assigning to every computably enumerable theory
T with T ⊇ T0 an algorithm F (T ) such that (a) and (b) hold.

(a) T0 proves that F (T ) is as fast as any algorithm T -provably deciding P0.
(b) For every theory T ∗ with T ∗ ⊇ T the following are equivalent:

(i) T ∗ proves ConT .
(ii) The algorithm F (T ) T ∗-provably decides P0.
(iii) There is an algorithm such that T ∗ proves that it decides P0 and that it is as fast as any algorithm

T -provably deciding P0.

Hence, by merely knowing the extension T of T0 we are able to compute the algorithm F (T ), which is,
provably in T0, as fast as any algorithm T -provably deciding P0; however, in order to prove that F (T )
decides P0 we need the full strength of T ∪ {ConT }. In this sense, T ∪ {ConT } is a minimal extension
of T .

It is known [7] that there are problems P0 such that one can effectively assign to every algorithm A

deciding P0 a further algorithm B deciding P0 such that A is not as fast as B. Based on this fact, from
our considerations yielding a proof of Theorem 1 we obtain a version of Gödel’s Second Incompleteness
Theorem.

The content of the different sections is the following. In Section 3, by a standard diagonalization technique
we derive a result showing for every computably enumerable set D of algorithms the existence of an algorithm
that on every input behaves as some algorithm in D and that is as fast as every algorithm in D (see Lemma 2).
In Theorem 7 of Section 4 we characterize problems with an optimal algorithm in terms of arithmetical
theories. Section 5 contains a proof of Theorem 1. Finally, we derive the Second Incompleteness Theorem
in Section 6.

Many papers in computational complexity, older and recent ones, address the question whether hard
problems have optimal or almost optimal algorithms. Although Levin [5] observed that there exists an
optimal algorithm that finds a satisfying assignment for every satisfiable propositional formula, it is not
known whether the class of satisfiable propositional formulas or the class of tautologies have an almost
optimal algorithm.

Krajíček and Pudlák [4] showed for the latter class that an almost optimal algorithm exists if and only if
“there exists a finitely axiomatized fragment T of the true arithmetic such that, for every finitely axiomatized
consistent theory S, there exists a deterministic Turing machine M and a polynomial p such that for any
given n, in time � p(n) the machine M constructs a proof in T of ConS(n).” Here ConS(n) claims that no
contradiction can be derived from S by proofs of lengths at most n.

Hartmanis [2] and Hutter [3] considered ‘provable’ algorithms, where ‘provable’ refers to a computably
enumerable, more or less specified true theory T . Hartmanis compares the class of problems decidable
within a given time bound with the class of problems T -provably decidable within this time bound and he
studies time hierarchy theorems in this context. Hutter constructs an algorithm “which is the fastest and
the shortest” deciding a given problem. As Hutter says, van Emde Boas pointed out to him that it is not
provable that his algorithm decides the given problem and that his proof is a “meta-proof which cannot
be formalized within the considered proof system” and he adds that “a formal proof of its correctness
would prove the consistency of the proof system, which is impossible by Gödel’s Second Incompleteness
Theorem.”

Unlike these papers we do not assume in Theorem 1 that T is a true theory.
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