Contents lists available at SciVerse ScienceDirect

## Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

## Chain conditions in dependent groups

Itay Kaplan<sup>a,\*,1</sup>, Saharon Shelah<sup>b,c,2</sup>

<sup>a</sup> Mathematisches Institut, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
<sup>b</sup> The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
<sup>c</sup> Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

ABSTRACT

theories

#### ARTICLE INFO

Article history: Received 6 December 2011 Received in revised form 19 July 2012 Accepted 19 July 2012 Available online 2 July 2013

MSC: 03C45 03C98 05D99

Keywords: Dependent theories NIP Strongly dependent theories Chain conditions dp-Rank Type definable groups

### 1. Introduction

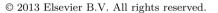
This note is about chain conditions in dependent, strongly dependent and strongly<sup>2</sup> dependent theories.

Throughout, all formulas will be first order, T will denote a complete first order theory, and  $\mathfrak{C}$  will be the monster model of T—a very big saturated model that contains all small models. We do not differentiate between finite tuples and singletons unless we state it explicitly.

\* Corresponding author.







In this note we prove and disprove some chain conditions in type definable

and definable groups in dependent, strongly dependent and strongly<sup>2</sup> dependent



E-mail address: itay.kaplan@uni-muenster.de (I. Kaplan).

 $<sup>^1\,</sup>$  The first author's research was partially supported by the SFB 878 grant.

 $<sup>^2</sup>$  The second author would like to thank the Israel Science Foundation for partial support of this research (Grant Nos. 710/07 and 1053/11). No. 993 on the author's list of publications.

1323

**Definition 1.1.** A formula  $\varphi(x, y)$  has the independence property in some model if for every  $n < \omega$  there are  $\langle a_i, b_s \mid i < n, s \subseteq n \rangle$  such that  $\varphi(a_i, b_s)$  holds iff  $i \in s$ .

A (first order) theory T is dependent (sometimes also NIP) if it does not have the independence property: there is no formula  $\varphi(x, y)$  that has the independence property in any model of T. A model M is dependent if Th(M) is.

A good introduction to dependent theories appears in [2], but we shall give an exact reference to any fact we use, so no prior knowledge is assumed.

What do we mean by a chain condition? Rather than giving an exact definition, we give an example of such a condition—the first one. It is the Baldwin–Saxl lemma, which we shall present with the (very easy and short) proof.

**Definition 1.2.** Suppose  $\varphi(x, y)$  is a formula. Then if G is a definable group in some model, and for all  $c \in C$ ,  $\varphi(x, c)$  defines a subgroup, then  $\{\varphi(\mathfrak{C}, c) \mid c \in C\}$  is a family of uniformly definable subgroups.

**Lemma 1.3.** (See [3].) Let G be a group definable in a dependent theory. Suppose  $\varphi(x, y)$  is a formula and that  $\{\varphi(x, c) \mid c \in C\}$  defines a family of subgroups of G. Then there is a number  $n < \omega$  such that any finite intersection of groups from this family is already an intersection of n of them.

**Proof.** Suppose not, then for every  $n < \omega$  there are  $c_0, \ldots, c_{n-1} \in C$  and  $g_0, \ldots, g_{n-1} \in G$  (in some model) such that  $\varphi(g_i, c_j)$  holds iff  $i \neq j$ . For  $s \subseteq n$ , let  $g_s = \prod_{i \in s} g_i$  (the order does not matter), then  $\varphi(g_s, c_j)$  iff  $j \notin s$ —this is a contradiction.  $\Box$ 

In stable theories (which we shall not define here), the Baldwin–Saxl lemma is even stronger: every intersection of such a family is really a finite one (see [7, Proposition 1.4]).

The focus of this note is type definable groups in dependent theories, where such a proof does not work.

**Definition 1.4.** A type definable group for a theory T is a type—a collection  $\Sigma(x)$  of formulas (maybe over parameters), and a formula  $\nu(x, y, z)$ , such that in the monster model  $\mathfrak{C}$  of T,  $\langle \Sigma(\mathfrak{C}), \nu \rangle$  is a group with  $\nu$  defining the group operation (without loss of generality,  $T \models \forall xy \exists \leq 1 z(\nu(x, y, z))$ ). We shall denote this operation by  $\cdot$ .

In stable theories, their analysis becomes easier as each type definable group is an intersection of definable ones (see [7]).

**Remark 1.5.** In this note we assume that G is a finitary type definable group, i.e. x above is a finite tuple.

**Definition 1.6.** Suppose  $G \ge H$  are two type definable groups (H is a subgroup of G). We say that the index [G : H] is *unbounded*, or  $\infty$ , if for any cardinality  $\kappa$ , there exists a model  $M \models T$ , such that  $[G^M : H^M] \ge \kappa$ . Equivalently (by the Erdős–Rado coloring theorem), this means that there exists (in  $\mathfrak{C}$ ) a sequence of indiscernibles  $\langle a_i \mid i < \omega \rangle$  (over the parameters defining G and H) such that  $a_i \in G$  for all i, and  $i < j \Rightarrow a_i \cdot a_j^{-1} \notin H$ . In  $\mathfrak{C}$ , this means that  $[G^{\mathfrak{C}} : H^{\mathfrak{C}}] = |\mathfrak{C}|$ . When G and H are definable, then by compactness this is equivalent to the index [G : H] being infinite.

So [G:H] is bounded if it is not unbounded.

This leads to the following definition:

Download English Version:

# https://daneshyari.com/en/article/4661797

Download Persian Version:

https://daneshyari.com/article/4661797

Daneshyari.com