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In this note we prove and disprove some chain conditions in type definable
and definable groups in dependent, strongly dependent and strongly2 dependent
theories.
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1. Introduction

This note is about chain conditions in dependent, strongly dependent and strongly2 dependent theo-
ries.

Throughout, all formulas will be first order, T will denote a complete first order theory, and C will be
the monster model of T—a very big saturated model that contains all small models. We do not differentiate
between finite tuples and singletons unless we state it explicitly.
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Definition 1.1. A formula ϕ(x, y) has the independence property in some model if for every n < ω there are
〈ai, bs | i < n, s ⊆ n〉 such that ϕ(ai, bs) holds iff i ∈ s.

A (first order) theory T is dependent (sometimes also NIP) if it does not have the independence property:
there is no formula ϕ(x, y) that has the independence property in any model of T . A model M is dependent
if Th(M) is.

A good introduction to dependent theories appears in [2], but we shall give an exact reference to any fact
we use, so no prior knowledge is assumed.

What do we mean by a chain condition? Rather than giving an exact definition, we give an example of
such a condition—the first one. It is the Baldwin–Saxl lemma, which we shall present with the (very easy
and short) proof.

Definition 1.2. Suppose ϕ(x, y) is a formula. Then if G is a definable group in some model, and for all c ∈ C,
ϕ(x, c) defines a subgroup, then {ϕ(C, c) | c ∈ C} is a family of uniformly definable subgroups.

Lemma 1.3. (See [3].) Let G be a group definable in a dependent theory. Suppose ϕ(x, y) is a formula and
that {ϕ(x, c) | c ∈ C} defines a family of subgroups of G. Then there is a number n < ω such that any finite
intersection of groups from this family is already an intersection of n of them.

Proof. Suppose not, then for every n < ω there are c0, . . . , cn−1 ∈ C and g0, . . . , gn−1 ∈ G (in some model)
such that ϕ(gi, cj) holds iff i �= j. For s ⊆ n, let gs =

∏
i∈s gi (the order does not matter), then ϕ(gs, cj) iff

j /∈ s—this is a contradiction. �
In stable theories (which we shall not define here), the Baldwin–Saxl lemma is even stronger: every

intersection of such a family is really a finite one (see [7, Proposition 1.4]).
The focus of this note is type definable groups in dependent theories, where such a proof does not

work.

Definition 1.4. A type definable group for a theory T is a type—a collection Σ(x) of formulas (maybe over
parameters), and a formula ν(x, y, z), such that in the monster model C of T , 〈Σ(C), ν〉 is a group with ν

defining the group operation (without loss of generality, T |= ∀xy∃�1z(ν(x, y, z))). We shall denote this
operation by ·.

In stable theories, their analysis becomes easier as each type definable group is an intersection of definable
ones (see [7]).

Remark 1.5. In this note we assume that G is a finitary type definable group, i.e. x above is a finite
tuple.

Definition 1.6. Suppose G � H are two type definable groups (H is a subgroup of G). We say that the
index [G : H] is unbounded, or ∞, if for any cardinality κ, there exists a model M |= T , such that
[GM : HM ] � κ. Equivalently (by the Erdős–Rado coloring theorem), this means that there exists (in C)
a sequence of indiscernibles 〈ai | i < ω〉 (over the parameters defining G and H) such that ai ∈ G for all i,
and i < j ⇒ ai · a−1

j /∈ H. In C, this means that [GC : HC] = |C|. When G and H are definable, then by
compactness this is equivalent to the index [G : H] being infinite.

So [G : H] is bounded if it is not unbounded.

This leads to the following definition:
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