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1. Introduction

From the beginning of Banach space theory it was well understood how useful was to represent nicely
the vectors of a given Banach space as sequences of scalars. This is for example the case when the space
has a Schauder basis (x,,),: Every vector is represented as a unique (possibly) infinite linear combination of
the vectors (z,,)necw. However, not every Banach space, even the separable ones, has a Schauder basis. But
fortunately, there are many of them. Indeed every infinite dimensional subspace contains itself a subspace
with a Schauder basis, or every non-trivial weakly-null sequence has a Schauder basic subsequence. As
it is expected, the more properties the basis has, the better understood the space may be. One of these
properties is to be equivalent to the unit basis of the classical sequence spaces £,, p > 1, or cy; another
is the unconditionality. It was a central problem in the field to know if every infinite dimensional Banach
space has an infinite dimensional subspace isomorphic to one of these classical sequence spaces. This was
solved in the 70’s by Tsirelson, who defined a space (interestingly, inspired by the method of forcing) not
having subsymmetric sequences, and consequently not having isomorphic copies of the classical sequence
spaces. It took a little more time until Gowers and Maurey found in the 90’s a space without subspaces
with unconditional bases. In the other direction, Ketonen showed in the 70’s the relationship between the
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existence of unconditional basic sequences and large cardinals by proving that every Banach space whose
density is an w-Erd6s cardinal always has a subspace with an unconditional basis. The key combinatorial
feature used by Ketonen is the Ramsey property of the w-Erdés cardinals. In this paper we explain this and
some other applications of Ramsey properties of a cardinal &, like the Polarized property Pls(x), or the Free
Set Property Fr(k,w), and we see how they force a Banach space of density k to have a subspace with an
unconditional basis. We will also see how Ketonen’s result can be improved to obtain that it is consistent
relative to the existence of large cardinals that every Banach space of density at least w, has a subspace
with an unconditional basis. On the other hand, we give details of the constructions, using anti-Ramsey
principles, of large sequences without unconditional basic subsequences. At the end of the paper we will also
mention problems concerning the existence of certain uncountable sequence, and we will present a general
approach to define generic spaces of density w; lacking those uncountable sequences.

2. Basic notions and facts

Recall that a normed space (X, || - ||) is a vector space X (over the real numbers R here) and a norm
II-1]: X = Ron it, ie.

(N.1) ||Az|| = |Al||z|| for every z € X and A € R.
(N.2) [l +yll < [l=]| + [lyl| for every z,y € X.
(N.3) |lz|| =0iff x = 0.

The normed space (X, || -||) is a Banach space when the norm || - || is complete, i.e. Cauchy sequences
are convergent. Well-know examples are R™ with the Euclidean norm |[[(a;)i<nll2 = O;cp las|?)2; the
infinite dimensional separable Hilbert space £y = {(ai)ien: (D _;cy |la;|?)2 < oo}, with the Euclidean norm
l(ai)ienll2 = (O sen |a;|?)2; the £, spaces, for p > 1, £, = {(ai)ien: (D _jen |ai|P)% < o0}, with the p-norm
Na)icwlly = (Syex asl?)¥; the space co = {(as)ien: lim; oo a; = 0}, with the sup-norm [|(as)iclloe =
sup{|a;|: i € N}; the non-separable space o = {(ai)ien: sup;eyl|ai| < oo}, with the sup-norm; or for
a compact space K, the space C(K) of continuous functions on K, endowed with the sup-norm, ||f| =
sup{|f(z)|: = € K} in particular, C([0, 1]).

Some basic notions that we are going to use along this paper are the following: A Banach space is infinite
dimensional if it is not a finite dimensional vector space. The density of a space X is its topological weight,
i.e. the smallest cardinality of a dense subset of X. A subspace Y of X will be understood as a linear
subspace of X, which is in addition closed. In particular Y with the norm || - || is also a Banach space. Given
a subspace Y of X, the quotient space X/Y is the Banach space over the linear quotient, endowed with the
norm ||z + Y| :=d(z,Y). An operator T : X — Y between two spaces X and Y is a linear mapping which
is continuous, or equivalently bounded, i.e., such that

|T|| :=sup{||Tz|: = € X, [z <1} < oo.

An isomorphic embedding T : X — Y is a 1-1 operator such that T'(X) is a closed subspace of ¥ and
the inverse U : T(X) — X is bounded. The dual X* of a Banach space X is the space of all operators
f X — R. This is a Banach space with the norm

1£[| = sup{||f(2)]: ll=| <1}.

The elements of X* are usually called functionals. The weak topology in X is the topology for which the basic
open neighborhoods of a point z € X are {y € X: max,;<, |fi(z)— fi(y)| < e} for fo,..., fn € X*and e > 0.
Similarly, the weak™ topology in X* is the topology with basic open neighborhoods of a functional f, the
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