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We introduce strong Goodstein principles which are true but unprovable in strong
impredicative theories like IDn.
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1. Introduction

Goodstein sequences provide examples for strictly mathematical statements which are true (by Goodstein,
see [8]) but (according to Kirby and Paris, see [9]) not provable in PA. In the 80s several attempts have
been made to define Goodstein principles capturing larger complexities using Π1

2 -logic. Unfortunately, even
slight extensions of the original Goodstein principle led in some articles (see for instance [1]) to somewhat
messy expositions which were not completely transparent, at least from our point of view.

Quite recently an alternative and transparent method to generate Goodstein principles has been provided
by De Smet and Weiermann in [6]. Their Goodstein principles ranged in strength between Peano Arithmetic
(PA) and the theory ID1 of non-iterated monotone inductive definitions, and they asked whether an extension
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to the theories IDn was possible. In this article we provide an affirmative answer by elementary calculations
based on Buchholz style tree ordinals and a trick suggested by Cichon, see [5].

There is some indication that Goodstein principles have no canonical extension to a strength beyond IDν

and we expect having reached a canonical limit for strong Goodstein principles.

2. Tree ordinals

We introduce tree ordinals, following lecture notes by Wilfried Buchholz. Minor technical modifications
are motivated by our specific purposes.

Definition 2.1. Inductive definition of classes Ti, i < ω, of tree ordinals.

1. 0 := () ∈ Ti.
2. α ∈ Ti ⇒ α + 1 := (α) ∈ Ti.
3. ∀n ∈ N(αn ∈ Ti) ⇒ (αn)n∈N ∈ Ti.
4. j < i & ∀ξ ∈ Tj(αξ ∈ Ti) ⇒ (αξ)ξ∈Tj

∈ Ti.

The set of tree ordinals, denoted by α,β,γ, etc., is thus given by

T<ω :=
⋃

i<ω

Ti.

We also use the notation 1 := (()) = 0 + 1.
Note that every α ∈ Ti is of a form (αι)ι∈I where I is one of the sets ∅, {0}, N, or Tj for some j < i.

We define
∥∥(αι)ι∈I

∥∥ := sup
ι∈I

(
‖αι‖ + 1

)
.

By transfinite induction on ‖α‖ it is easy to show that α = (αι)ι∈I ∈ Ti implies αι ∈ Ti for all ι ∈ I.
We introduce the following abbreviations:

0 := 0, n + 1 := n + 1

and

Ω0 := (n)n∈N, Ωi+1 := (ξ)ξ∈Ti
,

so that Ωi ∈ Ti −
⋃

j<i Tj . We will sometimes write ω for both ω := Ω0 and N, assuming that ambiguity is
excluded by context. Likewise, we will sometimes identify Ωi+1 with Ti.

Addition is defined by

α + 0 := α, α + (βι)ι∈I := (α + βι)ι∈I if I �= ∅,

consistent with the above definition of the special case α + 1, and multiples are defined by

α · 0 := 0, α · (n + 1) := (α · n) + α.

Proposition 2.2. Let α,β,γ ∈ T<ω.

1. α,β ∈ Ti ⇒ α + β ∈ Ti.
2. α + (β + γ) = (α + β) + γ.
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