Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

The randomization of a complete first order theory T is the complete continuous

theory T^R with two sorts, a sort for random elements of models of T, and a sort

for events in an underlying probability space. We give necessary and sufficient

conditions for an element to be definable over a set of parameters in a model of T^R .

Definable closure in randomizations

Uri Andrews^a, Isaac Goldbring^{b,*}, H. Jerome Keisler^a

 ^a University of Wisconsin-Madison, Department of Mathematics, Madison, WI 53706-1388, USA
^b University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, Science and Engineering Offices (M/C 249), 851 S. Morgan St., Chicago, IL 60607-7045, USA

ABSTRACT

ARTICLE INFO

Article history: Received 29 April 2013 Received in revised form 14 August 2014 Accepted 19 November 2014

MSC: primary 03C40 secondary 03B48, 03B50, 03C35

Keywords: Definable closure Randomizations

1. Introduction

A randomization of a first order structure \mathcal{M} , as introduced by Keisler [12] and formalized as a metric structure by Ben Yaacov and Keisler [4], is a continuous structure \mathcal{N} with two sorts, a sort for random elements of \mathcal{M} , and a sort for events in an underlying atomless probability space. Given a complete first order theory T, the theory T^R of randomizations of models of T forms a complete theory in continuous logic, which is called the randomization of T. In a model \mathcal{N} of T^R , for each *n*-tuple \vec{a} of random elements and each first order formula $\varphi(\vec{v})$, the set of points in the underlying probability space where $\varphi(\vec{a})$ is true is an event denoted by $[\![\varphi(\vec{a})]\!]$.

In a first order structure \mathcal{M} , an element b is *definable over* a set A of elements of \mathcal{M} (called parameters) if there is a tuple \vec{a} in A and a formula $\varphi(u, \vec{a})$ such that

* Corresponding author.

http://dx.doi.org/10.1016/j.apal.2014.11.005

0168-0072/© 2014 Elsevier B.V. All rights reserved.

CrossMark

© 2014 Elsevier B.V. All rights reserved.

E-mail addresses: and rews@math.wisc.edu (U. Andrews), isaac@math.uic.edu (I. Goldbring), keisler@math.wisc.edu (H.J. Keisler).

URLs: http://www.math.wisc.edu/~andrews (U. Andrews), http://www.math.uic.edu/~isaac (I. Goldbring), http://www.math.wisc.edu/~keisler (H.J. Keisler).

$$\mathcal{M} \models (\forall u) \big(\varphi(u, \vec{a}) \leftrightarrow u = b \big).$$

In a general metric structure \mathcal{N} , an element *b* is said to be *definable over* a set of parameters *A* if there is a sequence of tuples \vec{a}_n in *A* and continuous formulas $\Phi_n(x, \vec{a}_n)$ whose truth values converge uniformly to the distance from *x* to *b*. In this paper we give necessary and sufficient conditions for definability in a model of the randomization theory T^R . These conditions can be stated in terms of sequences of first order formulas.

In Theorem 3.1.2, we show that an event E is definable over a set A of parameters if and only if it is the limit of a sequence of events of the form $[\![\varphi_n(\vec{a}_n)]\!]$, where each φ_n is a first order formula and each \vec{a}_n is a tuple from A.

In Theorem 3.3.6, we show that a random element b is definable over a set A of parameters if and only if b is the limit of a sequence of random elements b_n such that for each n,

$$\llbracket (\forall u) \big(\varphi_n(u, \vec{a}_n) \leftrightarrow u = b_n \big) \rrbracket$$

has probability one for some first order formula $\varphi_n(u, \vec{v})$ and a tuple \vec{a}_n from A.

Our principal aim in this paper is to lay the groundwork for the study of independence relations in randomizations, that will appear in a forthcoming paper. However, in Section 4 of this paper we will give some more modest consequences of our results in the special case that the underlying first order theory T is \aleph_0 -categorical.

Continuous model theory in its current form is developed in the papers [3] and [5]. The papers [8–10] deal with definability questions in metric structures. Randomizations of models are treated in [1,2,4,7,11], and [12].

2. Preliminaries

We refer to [3] and [5] for background in continuous model theory, and follow the notation of [4]. We assume familiarity with the basic notions about continuous model theory as developed in [3], including the notions of a theory, structure, pre-structure, model of a theory, elementary extension, isomorphism, and κ -saturated structure. In particular, the universe of a pre-structure is a pseudo-metric space, the universe of a structure is a complete metric space, and every pre-structure has a unique completion. In continuous logic, formulas have truth values in the unit interval [0, 1] with 0 meaning true, the connectives are continuous functions from $[0, 1]^n$ into [0, 1], and the quantifiers are sup and inf. A *tuple* is a finite sequence, and $A^{<\mathbb{N}}$ is the set of all tuples of elements of A.

2.1. The theory T^R

We assume throughout that L is a finite or countable first order signature, and that T is a complete theory for L whose models have at least two elements.

The randomization signature L^R is the two-sorted continuous signature with sorts \mathbb{K} (for random elements) and \mathbb{B} (for events), an *n*-ary function symbol $\llbracket \varphi(\cdot) \rrbracket$ of sort $\mathbb{K}^n \to \mathbb{B}$ for each first order formula φ of L with n free variables, a [0, 1]-valued unary predicate symbol μ of sort \mathbb{B} for probability, and the Boolean operations $\top, \bot, \sqcap, \sqcup, \neg$ of sort \mathbb{B} . The signature L^R also has distance predicates $d_{\mathbb{B}}$ of sort \mathbb{B} and $d_{\mathbb{K}}$ of sort \mathbb{K} . In L^R , we use $\mathsf{B}, \mathsf{C}, \ldots$ for variables or parameters of sort \mathbb{B} . $\mathsf{B} \doteq \mathsf{C}$ means $d_{\mathbb{B}}(\mathsf{B}, \mathsf{C}) = 0$, and $\mathsf{B} \sqsubseteq \mathsf{C}$ means $\mathsf{B} \doteq \mathsf{B} \sqcap \mathsf{C}$.

A pre-structure for T^R will be a pair $\mathcal{P} = (\mathcal{K}, \mathcal{B})$ where \mathcal{K} is the part of sort \mathbb{K} and \mathcal{B} is the part of sort \mathbb{B} . The *reduction* of \mathcal{P} is the pre-structure $\mathcal{N} = (\widehat{\mathcal{K}}, \widehat{\mathcal{B}})$ obtained from \mathcal{P} by identifying elements at distance zero in the metrics $d_{\mathbb{K}}$ and $d_{\mathbb{B}}$, and the associated mapping from \mathcal{P} onto \mathcal{N} is called the *reduction*

Download English Version:

https://daneshyari.com/en/article/4661810

Download Persian Version:

https://daneshyari.com/article/4661810

Daneshyari.com