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1. Introduction

A randomization of a first order structure M, as introduced by Keisler [12] and formalized as a metric
structure by Ben Yaacov and Keisler [4], is a continuous structure N with two sorts, a sort for random
elements of M, and a sort for events in an underlying atomless probability space. Given a complete first
order theory T, the theory T of randomizations of models of T forms a complete theory in continuous
logic, which is called the randomization of 7. In a model N of T®, for each n-tuple @ of random elements
and each first order formula ¢(%), the set of points in the underlying probability space where ¢(@) is true
is an event denoted by [p(a)].

In a first order structure M, an element b is definable over a set A of elements of M (called parameters)
if there is a tuple @ in A and a formula ¢(u, @) such that
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M = (Vu) (¢(u, @) <> u=">).

In a general metric structure A/, an element b is said to be definable over a set of parameters A if there
is a sequence of tuples d@, in A and continuous formulas @, (x, @,) whose truth values converge uniformly
to the distance from z to b. In this paper we give necessary and sufficient conditions for definability in a
model of the randomization theory 7. These conditions can be stated in terms of sequences of first order
formulas.

In Theorem 3.1.2, we show that an event E is definable over a set A of parameters if and only if it is the
limit of a sequence of events of the form [, (@,)], where each ¢, is a first order formula and each @, is a
tuple from A.

In Theorem 3.3.6, we show that a random element b is definable over a set A of parameters if and only
if b is the limit of a sequence of random elements b,, such that for each n,

[(Vu) (‘Pn(ua n) <> u = bn)]]

has probability one for some first order formula ¢, (u, ) and a tuple @, from A.

Our principal aim in this paper is to lay the groundwork for the study of independence relations in
randomizations, that will appear in a forthcoming paper. However, in Section 4 of this paper we will give
some more modest consequences of our results in the special case that the underlying first order theory T
is Wo-categorical.

Continuous model theory in its current form is developed in the papers [3] and [5]. The papers [8-10]
deal with definability questions in metric structures. Randomizations of models are treated in [1,2,4,7,11],
and [12].

2. Preliminaries

We refer to [3] and [5] for background in continuous model theory, and follow the notation of [4]. We
assume familiarity with the basic notions about continuous model theory as developed in [3], including the
notions of a theory, structure, pre-structure, model of a theory, elementary extension, isomorphism, and
k-saturated structure. In particular, the universe of a pre-structure is a pseudo-metric space, the universe of
a structure is a complete metric space, and every pre-structure has a unique completion. In continuous logic,
formulas have truth values in the unit interval [0, 1] with 0 meaning true, the connectives are continuous
functions from [0, 1]™ into [0, 1], and the quantifiers are sup and inf. A tuple is a finite sequence, and A<N
is the set of all tuples of elements of A.

2.1. The theory T®

We assume throughout that L is a finite or countable first order signature, and that 7" is a complete
theory for L whose models have at least two elements.

The randomization signature LT is the two-sorted continuous signature with sorts K (for random ele-
ments) and B (for events), an n-ary function symbol [¢(-)] of sort K™ — B for each first order formula ¢ of
L with n free variables, a [0, 1]-valued unary predicate symbol u of sort B for probability, and the Boolean
operations T, L, M, U, — of sort B. The signature L also has distance predicates dg of sort B and dx of sort
K. In L®, we use B,C,... for variables or parameters of sort B. B = C means dg(B,C) = 0, and B C C
means B =B C.

A pre-structure for 7% will be a pair P = (K, B) where K is the part of sort K and B is the part of
sort B. The reduction of P is the pre-structure N = (IE,B\) obtained from P by identifying elements at
distance zero in the metrics dx and dg, and the associated mapping from P onto N is called the reduction
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