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The model-theoretic Grothendieck ring of a first order structure, as defined by 
Krajicěk and Scanlon, captures some combinatorial properties of the definable 
subsets of finite powers of the structure. In this paper we compute the Grothendieck 
ring, K0(MR), of a right R-module M , where R is any unital ring. As a corollary 
we prove a conjecture of Prest that K0(MR) is non-trivial, whenever M is non-zero. 
The main proof uses various techniques from simplicial homology and lattice theory 
to construct certain counting functions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Historical background

Krajicěk and Scanlon introduced the concept of the model-theoretic Grothendieck ring of a structure in 
[13]. Amongst many other results, they proved that such a Grothendieck ring is nontrivial if and only if 
the definable subsets of the structure satisfy a version of the combinatorial pigeonhole principle, called the 
“onto pigeonhole principle”. Grothendieck rings have been studied for various rings and fields considered as 
models of a first order theory (see [13,3–6]) and they are found to be trivial in many cases (see [3,4]).
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Prest conjectured that in stark contrast to the case of rings, for any ring R, the Grothendieck ring 
of a nonzero right R module MR, denoted K0(MR), is nontrivial. Perera [17] investigated the problem 
in his doctoral thesis but found only a partial solution. He showed that elementarily equivalent modules 
have isomorphic Grothendieck rings, which is not the case for general structures, and he showed that the 
Grothendieck ring for modules over semisimple rings are polynomial rings in finitely many variables over 
the ring of integers.

1.2. Contributions of the paper

In this paper we compute the Grothendieck ring for arbitrary modules over arbitrary rings and show that 
they are quotients of monoid rings Z[X ], where X is the multiplicative monoid of isomorphism classes of 
fundamental definable subsets of the module – the pp-definable subgroups. This is the content of the main 
theorem, Theorem 5.2.3, which also describes the ‘invariants ideal’ – the ideal of the monoid ring that codes 
indices of pairs of pp-definable subgroups. It should be noted that the proof gives an explicit description 
of the class [D] ∈ K0(M) of a definable set D. We further show (Corollary 5.2.11) that there is a split 
embedding Z → K0(M), whenever the module M is nonzero, proving Prest’s conjecture.

The proof of the main theorem uses inputs from various mathematical areas such as model theory, 
algebra, combinatorics and algebraic topology. Careful analysis of the meet-semilattice of pp-sets using 
Euler characteristics of abstract simplicial complexes yields a family of counting measures on definable sets; 
the Grothendieck ring bundles up such measures.

A special case of the main theorem (Theorem 4.1.2) is proved at the end of Section 4. The special case 
assumes that the theory T of the module M satisfies the model theoretic condition T = Tℵ0 . This condition 
is equivalent to the statement that the invariants ideal is trivial. The reader should note that the proof of 
the general case of the main theorem is not given in full detail since it develops along lines similar to the 
special case and uses only a few modifications which are indicated to incorporate the invariants ideal.

1.3. Canonical forms for definable sets

Holly [11] described a canonical form for definable subsets of algebraically closed valued fields by forming 
swiss cheeses – discs or balls with finitely many holes removed. She used the canonical form to prove the 
elimination of imaginaries in one dimension. Adler used the swiss cheeses to study definable sets in some 
classes of VC-minimal theories in [1]. Flenner and Guingona [9] extracted the notion of a directed family of 
sets from Adler’s work and used it to obtain uniqueness results on representations of sets constructible in a 
directed family. A directed family of sets is a meet-semilattice in which every two elements with non-trivial 
intersections are comparable. They introduced the notion of packability as the dividing line between absolute 
uniqueness and optimal uniqueness of representations.

The fundamental theorem of the model theory of modules (Theorem 2.5.5) states that every definable 
set is a boolean combination of pp-definable sets, but such a boolean combination is far from being unique. 
Under certain extra conditions on the theory of the module, we achieve a ‘uniqueness’ result as a by-product 
of the theory we develop. We call this result the ‘cell decomposition theorem’ (Theorem 6.3.4) which states 
that definable sets can be represented uniquely using the meet-semilattice of pp-definable sets provided the 
theory T of the module satisfies T = Tℵ0 . This model-theoretic condition is analogous to the notion of 
unpackability in [9, § 2] and Theorem 6.3.4 generalises [9, Corollary 2.3].

Though the cell decomposition theorem is not used directly in any other proof, its underlying idea is 
one of the most important ingredients of the main proof. Based on this idea, we define various classes of 
definable sets of increasing complexity, namely pp-sets, convex sets, blocks and cells. The terms ball and 
swiss cheese in [9] correspond to the terms pp-sets and blocks in our setting. Our strategy to prove every 
result about a general definable set is to prove it first for convex sets, then blocks and then cells. We deal 
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