Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Definable normal measures $\stackrel{\Leftrightarrow}{\sim}$

Sy-David Friedman^{a,*}, Liuzhen Wu^b

^a Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, 1090 Vienna, Austria
^b Institute of Mathematics, Chinese Academy of Sciences, East Zhong Guan Cun Road No. 55, Beijing 100190, China

ARTICLE INFO

Article history: Received 13 November 2013 Received in revised form 27 August 2014 Accepted 28 August 2014 Available online 12 September 2014

MSC: 03E35 03E55

Keywords: Measures Definability Forcing Core models

ABSTRACT

A normal measure U on a measurable cardinal κ cannot be definable over $H(\kappa^+)$, as otherwise it would belong to its own ultrapower. In this article we show that it may however be Δ_1 definable over $H(\kappa^{++})$ when the GCH fails at κ . In [7] it is shown that there can be a unique normal measure on κ when the GCH fails at κ ; we show here that this unique normal measure can in addition be Δ_1 definable over $H(\kappa^{++})$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Definability is a central theme in set theory and in this paper we examine it in the large cardinal setting. Important work in inner model theory (see [10]) reveals that the smaller of the large cardinals can exist in L-like models which share many of the definability features of Gödel's L. This can be extended with forcing (via the *outer model programme*) to the strongest of large cardinals (see [3–5], for example). When GCH fails, obtaining large cardinal definability results is more of a challenge; an example is [6], which provides a definable wellorder of $H(\kappa^+)$ when the GCH fails at the measurable cardinal κ .

 ‡ The authors were supported by Project P23316-N13 of the Austrian Science Fund (FWF).

* Corresponding author.

E-mail addresses: sdf@logic.univie.ac.at (S.-D. Friedman), lzwu@math.ac.cn (L. Wu).

In this paper we continue the study of large cardinal definability when GCH fails, by showing that there can be a normal measure on κ which is Δ_1 definable over $H(\kappa^{++})$ with $2^{\kappa} = \kappa^{++}$; we can even add the requirement that there is only one normal measure on κ .

1.1. Core model theory

We begin with some facts from core model theory (see [10]). Let L[E] be the core model for a κ^{++} -hypermeasurable cardinal κ (i.e. a cardinal κ which is the critical point of an elementary embedding $j: V \to M$ with $H(\kappa^{++}) \subseteq M$, or equivalently, a cardinal κ which is $\kappa + 2$ -strong). Then in L[E] we have local definability in the following sense: For every successor cardinal $\eta \geq \omega_2, E \upharpoonright \eta$ is Σ_1 definable over $H(\eta)$ with parameters, and this remains true in all cardinal-preserving set-generic extensions of L[E]. Using the fact that $\alpha \mapsto L_{\alpha}[E]$ is Σ_1 in $\langle L_{\eta}[E], E \upharpoonright \eta \rangle$ and an appropriate form of condensation for substructures of $L_{\eta}[E]$ we may carry out the canonical construction of a \diamond sequence:

Fact 1.1. In L[E], for each regular cardinal α there is a $\Diamond_{\alpha^+}(\alpha^+ \cap \operatorname{Cof}(\alpha))$ -sequence \vec{D}_{α} which is Σ_1 definable over $\langle L_{\alpha^+}[E], E \upharpoonright \alpha^+ \rangle$ in parameter $\{\alpha\}$, uniformly in α .

Let $\langle A_i \mid i < \alpha^{++} \rangle$ be the enumeration of $P(\alpha^+)^{L[E]}$ along $\langle L[E]$. Then $\vec{S} = \langle S_i \mid i < \alpha^{++} \rangle$ is an almost disjoint family of stationary sets where $S_i = \operatorname{Cof}(\alpha) \cap \{j < \alpha^+ \mid A_i \cap j = D_j\}$. It follows that \vec{S} is Σ_1 definable with parameters over $\langle L_{\alpha^{++}}[E], E \upharpoonright \alpha^{++} \rangle$ and therefore also over the $H(\alpha^{++})$ of any cardinal-preserving set-generic extension of L[E]. For technical reasons, we assume that \vec{S} starts with S_{-1} instead of S_0 .

For inaccessible α , let $Sacks(\alpha)$ denote the following forcing. A condition is a subset T of $2^{<\alpha}$ such that:

- (1) $s \in T, t \subseteq s \to t \in T$.
- (2) Each $s \in T$ has a proper extension in T.
- (3) If $s_0 \subseteq s_1 \subseteq \cdots$ is a sequence in T of length less than α then the union of the s_i 's belongs to T.
- (4) Let Split(T) denote the set of s in T such that both s * 0 and s * 1 belong to T. Then for some closed unbounded $C(T) \subseteq \alpha$,

$$Split(T) \supset \{s \in T \mid length(s) \in C(T)\}.$$

Extension is defined by $S \leq T$ iff S is a subset of T. $Sacks(\alpha)$ is an α -closed forcing of size α^+ . For $i < \alpha$, we define the *i*-th splitting level of T, $Split_i(T)$ to consist of all $s \in Split(T)$ such that $\{j < |s| \mid s \upharpoonright j \in Split(T)\}$ has ordertype *i*. Say $S \leq_{\beta} T$ iff $S \leq T$ and $Split_i(T) = Split_i(S)$ whenever $i < \beta$.

For any condition S and node $s \in S$, S|s denotes the subtree $\{t \in S \mid t \subseteq s \land s \subseteq t\}$ of S. Suppose $\langle P_{\beta}, \dot{Q}_{\beta} \mid \beta \in I \rangle$ is an iterated forcing where some of the \dot{Q}_{β} 's are of the form $Sacks(\alpha)^{P_{\beta}}$ and f is a function from such β 's to $2^{<\alpha}$. Then for any condition p, we define p|f by setting $(p|f)(\alpha) = p(\alpha)$ if $\alpha \notin dom(f)$ and $(p|f)(\alpha) = p(\alpha)|f(\alpha)$ otherwise. We are only interested in the case when p|f is also a condition in the iteration.

2. A definable normal measure

Theorem 2.1. $Con(ZFC + \kappa \text{ is a } \kappa^{++}\text{-hypermeasurable cardinal}) \rightarrow Con(ZFC + 2^{\kappa} = \kappa^{++} + \text{ there is a normal measure } U \text{ on } \kappa \text{ such that } U \text{ is } \Delta_1 \text{ definable over } H(\kappa^{++}) \text{ with parameters}).$

We begin with an outline of the proof. We use the method of [1] to obtain a model where κ is measurable and $2^{\kappa} = \kappa^{++}$ using iterated κ -Sacks forcing, after a preparation below κ using iterated α -Sacks forcings for Download English Version:

https://daneshyari.com/en/article/4661831

Download Persian Version:

https://daneshyari.com/article/4661831

Daneshyari.com