

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

The quantum harmonic oscillator as a Zariski geometry

Vinesh Solanki ^{a,*,1}, Dmitry Sustretov ^{b,2}, Boris Zilber ^c

- ^a Heilbronn Institute for Mathematical Research, School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK
- ^b Department of Mathematics, Ben-Gurion University of the Negev, Yitzhak Rager Street, 84105 Be'er Sheva, Israel
- ^c Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford, OX1 3LB, UK

ARTICLE INFO

Article history: Received 3 April 2013 Received in revised form 20 September 2013 Accepted 12 December 2013 Available online 7 March 2014

MSC: 03C65 11R34 81R10 14A22

Keywords: Interpretability Zariski geometries

ABSTRACT

A structure is associated with the quantum harmonic oscillator, over a fixed algebraically closed field \mathbb{F} of characteristic 0, which is shown to be uncountably categorical. An analysis of definable sets is carried out, from which it follows that this structure is a Zariski geometry of dimension 1. It is non-classical in the sense that it is not interpretable in ACF_0 and in the case $\mathbb{F} = \mathbb{C}$, is not a structure on a complex manifold.

© 2014 Published by Elsevier B.V.

1. Introduction and background

The present paper investigates an example of physical interest (the one-dimensional quantum harmonic oscillator) using model-theoretic methods. Specifically, we associate with this system a structure QHO_N (dependent on the positive integer number N) on the universe L which is a finite cover of order N of the projective line $\mathbb{P}^1 = \mathbb{P}^1(\mathbb{F})$, \mathbb{F} an algebraically closed field of characteristic 0. We prove that QHO_N is a complete irreducible Zariski geometry of dimension 1. We also prove that QHO_N is not classical in the sense that the structure is not interpretable in an algebraically closed field and, for the case $\mathbb{F} = \mathbb{C}$, is not a structure on a complex manifold.

^{*} Corresponding author. Tel.: +44 (0)117 956 5656.

E-mail addresses: vs12878@bristol.ac.uk (V. Solanki), sustreto@math.bgu.ac.il (D. Sustretov), zilber@maths.ox.ac.uk (B. Zilber).

The first author started this work under an EPSRC studentship and is currently supported by the Heilbronn Institute, University of Bristol

² The second author is supported by a fellowship of the Center for Advanced Studies in Mathematics at Ben-Gurion University of the Negev, and was also supported by Hill Foundation Scholarship when the work on the material present in the article has started.

Model-theoretic reasons for investigating QHO_N are as follows. In [2] a class of non-classical one-dimensional Zariski geometries was exhibited, by considering certain non-abelian group extensions of automorphisms of algebraic curves and constructing Zariski geometries which are acted upon by these groups via Zariski automorphisms. For a while, it looked as if these structures were the only source of non-classicality. In [10] the third author has shown that a large class of non-classical Zariski geometries can be obtained from quantum algebras at roots of unity, but all such geometries were of dimension (Morley rank) strictly greater than 1. The structure QHO_N is an example of a non-classical Zariski geometry of dimension 1 essentially differing from the examples in [2].

We recall briefly some physics only to provide some context for the definition of QHO_N . In the analysis of the one-dimensional quantum harmonic oscillator, one considers momentum and position operators P and Q respectively acting on a suitable Hilbert space, satisfying the so-called canonical commutation relation:

$$[Q, P] = QP - PQ = i$$

The energy levels of this physical system are given by the eigenvalues of the *Hamiltonian* $H = \frac{1}{2}(P^2 + Q^2)$. One can define the *creation* and *annihilation* operators, respectively:

$$\mathbf{a}^{\dagger} = \frac{1}{\sqrt{2}}(\mathbf{Q} - i\mathbf{P}), \quad \mathbf{a} = \frac{1}{\sqrt{2}}(\mathbf{Q} + i\mathbf{P})$$

and these are seen to satisfy the following commutation relations

$$[H, \mathbf{a}^{\dagger}] = \mathbf{a}^{\dagger}, \qquad [H, \mathbf{a}] = -\mathbf{a}, \qquad [\mathbf{a}, \mathbf{a}^{\dagger}] = 1$$

The structure QHO_N is defined to have a quotient $Q_N = (\mathcal{H}, \mathbb{F})$ which should be viewed as a bundle of eigenspaces $\mathcal{H} = \bigcup_{y \in \mathbb{P}^1(\mathbb{F})} \mathcal{H}_y$ for the number operator $\mathbf{N} = \mathbf{H} - \frac{1}{2}$ (thus if $y \in \mathbb{P}^1(\mathbb{F})$ then \mathcal{H}_y is a one-dimensional space consisting of vectors v such that $\mathbf{N}v = yv$). This action of \mathbf{N} on \mathcal{H} is definable. The structure Q_N is equipped with an action of \mathbf{a}^{\dagger} and \mathbf{a} on \mathcal{H} , linear on each fiber, with the property that

for each $y \in \mathbb{A}^1(\mathbb{F})$ and $v \in \mathcal{H}_y$ there is $v' \in \mathcal{H}_{y+1}$ such that $\mathbf{a}^{\dagger}v = bv'$ and $\mathbf{a}v' = bv$ for some b such that $b^2 = y$.

The reader will verify that the relations $[\mathbf{N}, \mathbf{a}^{\dagger}] = \mathbf{a}^{\dagger}$, $[\mathbf{N}, \mathbf{a}] = -\mathbf{a}$ and $[\mathbf{a}, \mathbf{a}^{\dagger}] = 1$ indeed hold.

Recall that the first Weyl algebra $A_1(\mathbb{F})$ is the \mathbb{F} -algebra generated by two generators x_1, x_2 subject to the relation $[x_1, x_2] = 1$. Although \mathcal{H} is not itself a representation of $A_1(\mathbb{F})$ (only the elements x_1 and x_2 are represented, as \mathbf{a}^{\dagger} and \mathbf{a} respectively), one can obtain irreducible representations of $A_1(\mathbb{F})$ from the orbits of the additive subgroup \mathbb{Z} of \mathbb{F} on $\mathbb{A}^1(\mathbb{F})$ in a natural way by considering direct sums of the fibers. We record the following observation for the interested reader, though it will play only a minor role in the sequel.

Proposition 1.1. Let $y \in \mathbb{A}^1(\mathbb{F})$. If $\{0\} \cap (y + \mathbb{Z}) = \emptyset$ then $V = \bigoplus_{n \in \mathbb{Z}} \mathcal{H}_{y+n}$ is an irreducible representation of $A_1(\mathbb{F})$. The exceptional orbit $W = \bigoplus_{n \in \mathbb{Z}} \mathcal{H}_n$ decomposes as a direct sum $W^- = \bigoplus_{n \leq 0} \mathcal{H}_n$ and $W^+ = \bigoplus_{n \geq 0} \mathcal{H}_n$ of irreducible representations.

Proof. If W' is a proper submodule, there is a minimal |y'| such that $\mathcal{H}_{y'} \cap W' = \{0\}$. If y' > 0 then taking $v \in \mathcal{H}_{y'-1} \subseteq W'$ we obtain that $\mathbf{a}^{\dagger}v \in \mathcal{H}_{y'} \cap W'$. Thus y' = 1 (hence $y' \in \mathbb{Z}$) and $W' = W^-$. Else y' < 0 and given $v \in \mathcal{H}_{y'+1} \subseteq W$ we have $\mathbf{a}v = 0$, giving $W' = W^+$. \square

The representation W^+ will be familiar to physicists: the eigenspaces of \mathbf{N} are those giving the permissible energy values of the quantum harmonic oscillator. Typically, one arrives at these energy values by considering

Download English Version:

https://daneshyari.com/en/article/4661836

Download Persian Version:

https://daneshyari.com/article/4661836

<u>Daneshyari.com</u>