Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Omitting uncountable types and the strength of [0, 1]-valued logics

Xavier Caicedo^{a,*}, José N. Iovino^{b,*}

^a Department of Mathematics, Universidad de los Andes, Apartado Aereo 4976, Bogotá, Colombia
^b Department of Mathematics, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0664, USA

ARTICLE INFO

Article history: Received 15 April 2012 Accepted 27 October 2013 Available online 28 February 2014

MSC: 03C95 03C90 03B52 54E52

Keywords: Continuous model theory Continuous logic Łukasziewicz logic Łukasziewicz–Pavelka logic Omitting types theorem

Introduction

In [9], Chang and Keisler introduced a model-theoretic apparatus for logics with truth values in a compact Hausdorff space whose logical operations are continuous, calling it *continuous logic*. In this paper we focus on the special case when the truth-value space is the closed unit interval [0, 1]. We call it *basic continuous logic*. The main result of the paper is a characterization of this logic in terms of a model-theoretic property, namely, an extension of the omitting types theorem to uncountable languages. This result generalizes a characterization of first-order logic due to Lindström [20]. By restricting basic continuous logic to particular classes of structures we obtain analogous characterizations of [0, 1]-valued logics that have been studied

* Corresponding authors. E-mail addresses: xcaicedo@uniandes.edu.co (X. Caicedo), iovino@math.utsa.edu (J.N. Iovino).

ABSTRACT

We study a class of [0, 1]-valued logics. The main result of the paper is a maximality theorem that characterizes these logics in terms of a model-theoretic property, namely, an extension of the omitting types theorem to uncountable languages. © 2014 Elsevier B.V. All rights reserved.

extensively, namely, Łukasziewicz–Pavelka logic [25–27] (see also Section 5.4 of [14]) and the first-order continuous logic framework of Ben Yaacov and Usvyatsov [3].

To make this more precise, consider the following logic \mathcal{L}_0 . The semantics is given by the class of *continuous metric structures*, that is, metric spaces with uniformly continuous functions and uniformly continuous [0, 1]-valued predicates, the distance being considered a distinguished predicate which replaces the identity relation. The sentences of \mathcal{L}_0 are [0, 1]-valued and they are built as follows. The atomic formulas are the predicate symbols and the distance symbol applied to terms. The connectives are the Łukasziewicz implication $(x \to y = \min\{1 - x + y, 1\})$ and the Pavelka rational constants, i.e., for each rational r in the closed interval [0, 1] a constant connective with value r (these are sufficient to generate, as uniform limits, all continuous connectives). The quantifiers are \forall and \exists are interpreted as infima and suprema of truth-values, respectively (only one of them is needed).

We observe that the restriction of \mathcal{L}_0 to the class of discrete metric structures is first-order logic, its restriction to the class of 1-Lipschitz structures is predicate Łukasziewicz–Pavelka logic, and its restriction to the class of complete structures yields the continuous logic framework of [3], called continuous logic in recent literature.

In general, a formula $\varphi(\bar{x})$ of an arbitrary [0, 1]-valued logic \mathcal{L} assigns to each structure M of its semantic domain and each tuple \bar{a} in M a *truth-value* $\varphi^M(\bar{a})$ belonging to [0, 1]. In this context, we may define a satisfaction relation: $M \models_{\mathcal{L}} \varphi[\bar{a}]$ if and only if $\varphi^M(\bar{a}) = 1$. Based on $\models_{\mathcal{L}}$, we introduce classical notions as consistency, semantical consequence, etc.

If λ is an uncountable cardinal and T is a theory of cardinality $\leq \lambda$ in a logic \mathcal{L} , we will say that a partial type $\Sigma(x)$ of \mathcal{L} is λ -principal over T if there exists a set of formulas $\Phi(x)$ of cardinality $< \lambda$ such that $T \cup \Phi(x)$ is consistent and $T \cup \Phi(x) \models_{\mathcal{L}} \Sigma(x)$. The notion of ω -principal is slightly more involved (see Definition 3.4).

A logic \mathcal{L} satisfies the λ -omitting types property if whenever T is a consistent theory of \mathcal{L} of cardinality $\leq \lambda$ and $\{\Sigma_j(x)\}_{j<\lambda}$ is a set of types that are not λ -principal over T there is a model of T that omits each $\Sigma_j(x)$.

In the first part of the paper we prove the following result:

Theorem 1. \mathcal{L}_0 satisfies the λ -omitting types property, for every infinite cardinal λ .

In the second part we show that this property for uncountable cardinals characterizes \mathcal{L}_0 :

Theorem 2. Let \mathcal{L} be a [0,1]-valued logic that extends \mathcal{L}_0 and satisfies the following properties:

- The λ -omitting types property for every uncountable cardinal λ ,
- · Closure under the of Lukasziewicz–Pavelka connectives (see below) and the existential quantifier,
- \cdot Every continuous metric structure is logically equivalent in \mathcal{L} to its metric completion.

Then every sentence in \mathcal{L} is a uniform limit of sentences in \mathcal{L}_0 .

By restricting Theorem 2 to the class of 1-Lipschitz structures we obtain a characterization of Lukasziewicz–Pavelka logic, and by restricting it to the class of complete structures we obtain an analogous characterization of continuous logic. See Corollary 4.7. However, the latter case uses a form of the λ -omitting types property asserting that the type-omitting structure is complete. This version requires a stronger notion of type principality, but it follows from the λ -omitting types property of \mathcal{L}_0 .

Our proof of the λ -omitting types property is based on a general version of the Baire category theorem (Proposition 3.2). The proof covers at once the uncountable case and, with a minor modification, the case $\lambda = \omega$. (See Theorem 3.6.) The countable case is not new; omitting types theorems for [0, 1]-valued logics

Download English Version:

https://daneshyari.com/en/article/4661837

Download Persian Version:

https://daneshyari.com/article/4661837

Daneshyari.com