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Fix a cardinal κ . We can ask the question: what kind of a logic L is needed to characterize
all models of cardinality κ (in a finite vocabulary) up to isomorphism by their L-theories?
In other words: for which logics L it is true that if any models A and B of cardinality κ
satisfy the same L-theory then they are isomorphic?
It is always possible to characterize models of cardinality κ by their Lκ+,κ+ -theories, but
we are interested in finding a “small” logic L, i.e., the sentences of L are hereditarily
of smaller cardinality than κ . For any cardinal κ it is independent of ZFC whether any
such small definable logic L exists. If it exists it can be second order logic for κ = ω
and fourth order logic or certain infinitary second order logic L2

κ,ω for uncountable κ . All
models of cardinality κ can always be characterized by their theories in a small logic with
generalized quantifiers, but the logic may be not definable in the language of set theory.
Our work continues and extends the work of Ajtai [Miklos Ajtai, Isomorphism and higher
order equivalence, Ann. Math. Logic 16 (1979) 181–203].

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We shall investigate whether second order equivalence of two models, or equivalence in some stronger logic than second
order logic, implies isomorphism of the models in certain cardinalities. We always assume that our vocabulary is finite. The
notation which is not yet explained can be found under the heading “Notation” below.

Remark 1.1. We are assuming throughout this paper that the vocabulary is finite. This is because if the vocabulary is finite,
then the isomorphism type of the model is characterizable inside the model in second order logic. In infinitary second order
logic L2

κ,ω the isomorphism type of the model is characterizable if the vocabulary is smaller than κ , and our assumption is
stronger than what is needed.

The following lemma of Shelah demonstrates that not all countable models with countable vocabularies can be charac-
terized by their second order theories.

Lemma 1.2 (Shelah). There are two countable non-isomorphic second order equivalent models in a countably infinite vocabulary. The
models are also Ln-equivalent for any n.

Proof. The vocabulary of the models contains infinitely many constants {cn: n ∈ ω}. Let A be a model such that dom(A) =
{an: n ∈ ω} and cAn = an for each n. Let dom(B) = {an: n ∈ ω} ∪ {aω} and cBn = an for each n.
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The models are not isomorphic as in the model A every element is an interpretation of some constant but in B the
element aω is not an interpretation of any constant. We claim that the models A and B are Ln-equivalent for any n. So take
an arbitrary Ln-sentence φ. Let τ be the finite set of constants in φ. Now A � τ is isomorphic to B � τ and it follows that A
and B satisfy the same Ln-sentences in the vocabulary τ . Thus A |� φ ⇔B |� φ. �

Suppose L is a logic [3] (Chapter 2, Definition 1.1.1). The L-theory of a model is the set of L-sentences true in the model.
Two models are said to satisfy the same L-theory if they satisfy the same L-sentences.

Definition 1.3. We use the expression A(L, κ) to refer to the following condition: For any models A and B of cardinality κ ,
if A and B satisfy the same L-theory then they are isomorphic.

We use A(Z F , κ) to denote the condition “for all models A and B of cardinality κ in a finite vocabulary, if A and B

satisfy the same sentences (with the model as a parameter) in the language of set theory then A ∼= B.” Note that ZF is not
a logic as two isomorphic models can satisfy different sentences in the language of set theory.

Definition 1.4. We call A(L2,ω) when restricted to ordinals the Fraïssé Hypothesis. This is the Hypothesis: All countable
ordinals have different second order theories.

Ajtai [2] has proved that A(L2,ω) is independent of ZFC. We are looking for related results in the cardinality ℵ0 and
similar results in higher cardinalities. The name “Fraïssé Hypothesis” has been introduced by Wiktor Marek. The Fraïssé
Hypothesis has been studied by Fraïssé [4] and Marek [12,13].

Our results are relative to the consistency of ZFC. If we assume more than the consistency of ZFC it is always explicitly
mentioned.

In Section 3 we will recall the proof of Ajtai and make some observations related to A(L2,ω).
In Section 4 we will develop a forcing technique for coding subsets of ordinals by collapsing certain cardinals. This

forcing is used to prove for example the following: If κ is a cardinal in L, then there is a transitive model of ZFC in which
A(L4, λ) holds for exactly cardinals λ smaller than or equal to κ .

In Section 5 we will show that if κ is a cardinal, then there is a language Lκ∗ with κ many generalized quantifiers
such that A(Lκ∗, κ) holds. Given a cardinal κ the language Lκ∗ may be different for different models of ZFC containing κ
and it is also possible that no such Lκ∗ is definable in the language of set theory. This result for κ = ω is due to Scott
Weinstein (Personal communication with Jouko Väänänen) and the generalization for uncountable κ is based on an idea of
Per Lindström (Personal letter to Jouko Väänänen, 1 August 1974).

In Section 6 we will use Ajtai’s method to prove that it is independent of ZFC whether A(L2
κ,ω, κ) holds for a regular

cardinal κ . We will also prove that for different regular cardinals κ and λ, A(L2
κ,ω, κ) and A(L2

λ,ω,λ) are independent of
each other. We will also give an analogous result for singular cardinals.

In Section 7 we will investigate the relation between A(L2,ω) and various large cardinal axioms. If there are infinitely
many Woodin cardinals and a measurable cardinal above them, then A(L2,ω) fails. Assuming the consistency of relevant
large cardinal axioms, if n is a natural number, then there is a model of ZFC in which there are n Woodin cardinals and
A(L2,ω) holds. As n grows bigger, more complex second order sentences seem to be needed to characterize all countable
models up to isomorphism. A(L3,ω) is consistent with Martin’s Maximum and practically all large cardinal axioms.

For a discussion of the role of second order characterizations in the foundations of mathematics see [21].

Notation

The expression ZF-formulas refers to formulas in the language of set theory, i.e., first order language in a vocabulary with
one binary relation ∈. ZF-equivalence of two structures, denoted by A ≡Z F B, refers to the condition that A and B satisfy
the same formulas of the language of set theory, i.e., for any formula φ(x) in the language of set theory V |� φ(A) ↔ φ(B).
If L is a logic A ≡L B refers to the condition that A and B satisfy the same sentences of L. The expression H(κ) refers
to the set of sets hereditarily smaller than κ , i.e., {X : the transitive closure of X has cardinality less than κ}. The symbol
� means “restricted to”. Depending on context this can mean a reduct of a model to a smaller vocabulary or restriction
of some operations to some set. The notation φM(·) refers to the set of tuples which satisfy the formula φ in model M.
A forcing name of a given set X is denoted by Ẋ . Interpretation of a definable set in a given model of ZFC is denoted by
the set with the model of ZFC as superscript: for example ωL

1 means the ω1 of L. If t is a term, A is a model and s is an
assignment which maps the free variables of t to elements of A, tAs refers to the interpretation of t in A with assignment s.
Analogously if R is a higher order variable RA

s refers to the interpretation of the higher order variable R in the model A
with assignment s. If the higher order variable has subscripts and superscripts, we use parentheses for clarity: for example
(Ri

j)
A
s . The expression A |�s φ refers to the condition that the formula φ with the assignment s is satisfied in the model A.

By the reals we mean the power set of ω.
Notation which is not explained is standard as used for example in Jech’s book [9].
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