ELSEVIER

Contents lists available at SciVerse ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Reverse mathematics and Peano categoricity

Stephen G. Simpson^{a,*}, Keita Yokoyama^{b,1}

^a Department of Mathematics, Pennsylvania State University, United States
^b Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan

ARTICLE INFO

Article history: Received 28 March 2012 Received in revised form 28 September 2012 Accepted 9 October 2012 Available online 27 October 2012 Communicated by U. Kohlenbach

MSC: primary 03B30 secondary 03D80, 03F35, 00A30

Keywords: Reverse mathematics Second-order arithmetic Peano system Foundations of mathematics Proof theory Second-order logic

1. Introduction

ABSTRACT

We investigate the reverse-mathematical status of several theorems to the effect that the natural number system is second-order categorical. One of our results is as follows. Define a system to be a triple A, i, f such that A is a set and $i \in A$ and $f : A \to A$. A subset $X \subseteq A$ is said to be *inductive* if $i \in X$ and $\forall a (a \in X \Rightarrow f(a) \in X)$. The system A, i, f is said to be *inductive* if the only inductive subset of A is A itself. Define a *Peano system* to be an inductive system such that f is one-to-one and $i \notin$ the range of f. The standard example of a Peano system is $\mathbb{N}, 0, S$ where $\mathbb{N} = \{0, 1, 2, ..., n, ...\} =$ the set of natural numbers and $S : \mathbb{N} \to \mathbb{N}$ is given by S(n) = n + 1 for all $n \in \mathbb{N}$. Consider the statement that all Peano systems are isomorphic to $\mathbb{N}, 0, S$. We prove that this statement is logically equivalent to WKL₀ over RCA₀^{*}. From this and similar equivalences we draw some foundational/philosophical consequences.

© 2012 Elsevier B.V. All rights reserved.

*Reverse mathematics*² is a well known [18,20] research direction in the foundations of mathematics. The goal of reverse mathematics is to pinpoint the weakest set-existence axioms which are needed in order to prove specific theorems of core mathematics. Such investigations are most fruitfully carried out in the context of subsystems of second-order arithmetic [18]. In that context it frequently happens that the weakest axioms needed to prove a particular theorem are logically equivalent to the theorem, over a weak base theory. For example, the well known theorem that every uncountable closed set in Euclidean space contains a perfect subset is logically equivalent to ATR_0 over the weak base theory RCA_0 [18, Theorem V.5.5].

A key theorem in rigorous core mathematics is the categoricity of the natural number system. Stated more precisely and in 20th-century language, the *Peano Categoricity Theorem* [14, Theorem 2.7.1] asserts that any two Peano systems are isomorphic. The Peano Categoricity Theorem was originally proved by Dedekind in 1888 ([4, Satz 132], [5, Theorem 132])

* Corresponding author.

E-mail addresses: simpson@math.psu.edu (S.G. Simpson), yokoyama.k.ai@m.titech.ac.jp (K. Yokoyama). URL: http://www.math.psu.edu/simpson (S.G. Simpson).

¹ Yokoyama's research was supported by a Japan Society for the Promotion of Science postdoctoral fellowship for young scientists, and by a grant from the John Templeton Foundation.

² A crucial role in the development of reverse mathematics was played by H. Friedman [7,8]. We thank the referee for strongly suggesting that we include this historical comment.

as a highlight of his rigorous, set-theoretical development [3–5] of the natural number system \mathbb{R} .

In this paper we investigate the reverse-mathematical and proof-theoretical status of the Peano Categoricity Theorem and related theorems. One of our results is as follows.

The Peano Categoricity Theorem is equivalent to WKL_0 over the standard weak base theory RCA_0 .

Here RCA_0 and WKL_0 are familiar [18,20] subsystems of second-order arithmetic. Namely, RCA_0 consists of Δ_1^0 comprehension plus Σ_1^0 induction, and WKL_0 consists of RCA_0 plus Weak König's Lemma.

Our result (1) offers further confirmation of a point made by Väänänen³ in a recent talk based on his recent paper [22]. Väänanen observed that various second-order categoricity theorems can be proved without resorting to the full strength of second-order logic. Clearly (1) bears this out, because WKL₀ is a relatively weak⁴ subsystem of second-order arithmetic, much weaker than ACA₀ and in fact Π_2^0 -equivalent to Primitive Recursive Arithmetic [18, §IX.3]. Since by (1) the Peano Categoricity Theorem is provable in WKL₀, it follows that the Peano Categoricity Theorem is *finitistically reducible* in the sense of Simpson's partial realization [17,19] (see also [1]) of Hilbert's Program [9].

As a refinement of (1) we obtain the following stronger result.

The Peano Categoricity Theorem is equivalent to
$$WKL_0$$

not only over RCA_0 but over the much weaker base theory RCA_0^* . (2)

Recall from Simpson [18, §X.4] and Simpson and Smith [21] that RCA_0^* is RCA_0 with Σ_1^0 induction weakened to Δ_1^0 induction plus *natural number exponentiation*, i.e., the assertion that m^n exists for all $m, n \in \mathbb{N}$. It is known that RCA_0^* is Π_2^0 -equivalent to Elementary Function Arithmetic [21], hence much weaker than RCA_0 and WKL_0 which are Π_2^0 -equivalent to Primitive Recursive Arithmetic [18, §IX.3].

Our stronger result (2) provides some foundational or philosophical insight concerning Dedekind's construction of the natural number system [4,5]. Recall that Dedekind's key technical lemma, the "Satz der Definition durch Induction," is a straightforward embodiment⁵ of the idea of primitive recursion. But at the same time, according to (2), the Peano Categoricity Theorem itself *requires* primitive recursion. Thus (2) constitutes further evidence that primitive recursion is indeed the heart of the matter.

The plan of this paper is as follows. In Section 2 we prove (1). In Section 3 we prove (2). In Section 4 we investigate the reverse-mathematical status of certain variants of the Peano Categoricity Theorem, replacing the Peano system \mathbb{N} , 0, *S* by the ordered system \mathbb{N} , 0, *<* or the ordered Peano system \mathbb{N} , 0, *<*, *S*. In Section 5 we summarize our results and state some open questions.

2. The role of Weak König's Lemma

Recall from [18] that RCA₀ is the subsystem of second-order arithmetic consisting of Δ_1^0 comprehension and Σ_1^0 induction. Within RCA₀ one may freely use primitive recursion and minimization to define functions $g : \mathbb{N}^k \to \mathbb{N}$ where \mathbb{N} is the set of natural numbers [18, §II.3]. Recall also [18] that WKL₀ consists of RCA₀ plus Weak König's Lemma, i.e., the statement that every infinite tree $T \subseteq \{0, 1\}^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} \{0, 1\}^n$ has an infinite path.

The purpose of this section is to show that the Peano Categoricity Theorem is equivalent to Weak König's Lemma, the equivalence being provable in RCA₀.

Definition 2.1. Within RCA₀ we make the following definitions. A *system* is a triple A, i, f such that $A \subseteq \mathbb{N}$ and $i \in A$ and $f : A \to A$. A *Peano system* is a system A, i, f such that $i \notin \operatorname{rng}(f)$ and f is one-to-one and

 $(\forall X \subseteq A) ((i \in X \text{ and } \forall a (a \in X \Rightarrow f(a) \in X)) \Rightarrow X = A).$

The standard example of a Peano system is \mathbb{N} , 0, *S* with $S : \mathbb{N} \to \mathbb{N}$ defined by S(n) = n + 1. A Peano system *A*, *i*, *f* is said to be *isomorphic to* \mathbb{N} if there exists a bijection $\Phi : A \to \mathbb{N}$ such that $\Phi(i) = 0$ and $\Phi(f(a)) = \Phi(a) + 1$ for all $a \in A$. A Peano system *A*, *i*, *f* is said to be *almost isomorphic to* \mathbb{N} if for each $a \in A$ there exists $n \in \mathbb{N}$ such that $f^n(i) = a$.

Lemma 2.2. The following is provable in RCA_0 . If a Peano system is almost isomorphic to \mathbb{N} , it is isomorphic to \mathbb{N} .

Proof. We reason in RCA₀. Let A, i, f be a system. As in [18, §II.3] use Σ_1^0 induction to prove that for all $n \in \mathbb{N}$, $f^n(i)$ exists and $f^n(i) \in A$. Use Δ_1^0 comprehension to prove the existence of the function $n \mapsto f^n(i) : \mathbb{N} \to A$. Assume now that

(1)

³ We thank Jouko Väänänen for raising the question which is answered by (1).

⁴ By the *strength* of a theory *T* we mean the set of Π_1^0 sentences which are provable in *T*.

⁵ Dedekind's "Satz der Definition durch Induction" ([4, Satz 126], [5, Theorem 126]) may be restated in 20th-century language [14, Theorem 2.2.1] as follows. For any system A, i, f there is a unique function $\Phi : \mathbb{N} \to A$ such that $\Phi(0) = i$ and $\Phi(n + 1) = f(\Phi(n))$ for all $n \in \mathbb{N}$.

Download English Version:

https://daneshyari.com/en/article/4661916

Download Persian Version:

https://daneshyari.com/article/4661916

Daneshyari.com