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The fact that “natural” theories, i.e. theories which have something like an “idea” to them,
are almost always linearly ordered with regard to logical strength has been called one of
the great mysteries of the foundation of mathematics. However, one easily establishes the
existence of theories with incomparable logical strengths using self-reference (Rosser-style).
As a result, PA + Con(PA) is not the least theory whose strength is greater than that of PA.
But still we can ask: is there a sense in which PA + Con(PA) is the least “natural” theory
whose strength is greater than that of PA? In this paper we exhibit natural theories in
strength strictly between PA and PA+Con(PA) by introducing a notion of slow consistency.

© 2012 Elsevier B.V. All rights reserved.

1. Preliminaries

PA is Peano Arithmetic. PA �k denotes the subtheory of PA usually denoted by IΣk . It consists of a finite base theory P−
(which are the axioms for a commutative discretely ordered semiring) together with a single Πk+2 axiom which asserts that
induction holds for Σk formulae. For functions F :N → N we use exponential notation F 0(x) = x and F k+1(x) = F (F k(x)) to
denote repeated compositions of F .

In what follows we require an ordinal representation system for ε0. Moreover, we assume that these ordinals come
equipped with specific fundamental sequences λ[n] for each limit ordinal λ � ε0. Their definition springs forth from their
representation in Cantor normal form (to base ω). For an ordinal α such that α > 0, α has a unique representation:

α = ωα1 · n1 + · · · + ωαk · nk,

where 0 < k,n1, . . . ,nk < ω, and α1, . . . ,αk are ordinals such that α1 > · · · > αk .
If the Cantor normal form of β > 0 is ωβ1 · m1 + · · · + ωβl · ml , we write α � β if α > β and αk � β1.

Definition 1.1. For α an ordinal and n a natural number, let ωα
n be defined inductively by ωα

0 := α, and ωα
n+1 := ωωα

n .
We also write ωn for ω1

n . In particular, ω0 = 1 and ω1 = ω.
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Definition 1.2. For each limit ordinal λ � ε0, define a strictly monotone sequence, λ[n], of ordinals converging to λ from
below. We use the fact, following from the Cantor normal form representation, that if 0 < α < ε0, then there are unique
β,γ < ε0, and 0 < m < ω such that

α = β + ωγ · m

and either β = 0 or β has normal form ωβ1 · m1 + · · · + ωβl · ml with βl > γ .
The definition of λ[n] proceeds by recursion on this representation of λ.
Case 1. λ = β + ωγ · m and γ = δ + 1.
Put λ[n] = β + ωγ · (m − 1) + ωδ · (n + 1). (Remark: In particular, ω[n] = n + 1.)
Case 2. λ = β + ωγ · m, and γ < λ is a limit ordinal.
Put λ[n] = β + ωγ · (m − 1) + ωγ [n] .
Case 3. λ = ε0.
Put ε0[0] = ω and ε0[n + 1] = ωε0[n] . (Remark: Thus ε0[n] = ωn+1.)
It will be convenient to have α[n] defined for non-limit α. We set (β + 1)[n] = β and 0[n] = 0.

Definition 1.3. By “a fast growing” hierarchy we simply mean a transfinitely extended version of the Grzegorczyk hierarchy
i.e. a transfinite sequence of number-theoretic functions Fα :N → N defined recursively by iteration at successor levels and
diagonalization over fundamental sequences at limit levels. We use the following hierarchy:

F0(n) = n + 1, Fα+1(n) = F n+1
α (n), Fα(n) = Fα[n](n) if α is a limit.

It is closely related to the Hardy hierarchy:

H0(n) = n, Hα+1(n) = Hα(n + 1), Hα(n) = Hα[n](n) if α is a limit.

Their relationship is as follows:

Hωα = Fα (1)

for every α < ε0. If α = ωα1 · n1 + · · · + ωαk · nk is in Cantor normal form and β < ωαk+1, then

Hα+β = Hα ◦ Hβ. (2)

Ketonen and Solovay [8] found an interesting combinatorial characterization of the Hα ’s. Call an interval [k,n] 0-large if
k � n, α + 1-large if there are m,m′ ∈ [k,n] such that m �= m′ and [m,n] and [m′,n] are both α-large; and λ-large (where λ

is a limit) if [k,n] is λ[k]-large.

Theorem 1.4. (See Ketonen, Solovay [8].) Let α < ε0 .

Hα(n) = least m such that [n,m] is α-large, Fα(n) = least m such that [n,m] is ωα-large.

The order of growth of Fε0 is essentially the same as that of the Paris–Harrington function fPH . More details will be
provided in Section 3.1.

2. Capturing the Fα ’s in PA

In [8] many facts about the functions Fα , as befits their definition, are proved by transfinite induction on the ordinals
� ε0. In [8] there is no attempt to determine whether they are provable in PA (let alone in weaker theories). In what
follows we will have to assume that some of the properties of the Fα ’s hold in all models of PA. As a consequence, we will
revisit some parts of [8], especially Section 2, and recast them in such a way that they become provable in PA. Statements
shown by transfinite induction on the ordinals in [8] will be proved by ordinary induction on the term complexity of ordinal
representations, adding extra assumptions.

Definition 2.1. The computation of Fα(x) is closely connected with the step-down relations of [8] and [19]. For α < β � ε0
we write β →

n
α if for some sequence of ordinals γ0, . . . , γr we have γ0 = β , γi+1 = γi[n], for 0 � i < r, and γr = α. If we

also want to record the number of steps r, we shall write α
r→
n

β .

The definition of the functions Fα for α � ε0 employs transfinite recursion on α. It is therefore not immediately clear
how we can speak about these functions in arithmetic. Later on we shall need to refer to a definition of Fα(x) = y in an
arbitrary model of PA. As it turns out, this can be done via a formula of low complexity.
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