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In this paper, we improve a result of Seetapun and prove that above any nonzero,
incomplete recursively enumerable (r.e.) degree a, there is a high2 r.e. degree c > a
witnessing that a is locally noncappable (Theorem 1.1). Theorem 1.1 provides a scheme
of obtaining high2 nonboundings (Theorem 1.6), as all known high2 nonboundings, such as
high2 degrees bounding no minimal pairs, high2 plus-cuppings, etc.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A recursively enumerable (r.e.) degree a is locally noncappable if there is an r.e. degree c above a such that no nonzero
r.e. degree w below c forms a minimal pair with a. We say that c witnesses that a is locally noncappable.

Seetapun proved in his thesis [10] that every nonzero incomplete r.e. degree is locally noncappable. Giorgi published
Seetapun’s result in [5], but with one Σ3 outcome missing, therefore, we can say that Giorgi’s construction is not complete.
In this paper, we improve Seetapun’s result by showing that such witnesses can always be chosen as high2 degrees.

Theorem 1.1. Given a nonzero incomplete r.e. degree a, there exists a high2 r.e. degree c > a witnessing that a is locally noncappable.

The proof of Theorem 1.1 combines Seetapun’s construction and the high2 strategy developed in Lerman [8] and Downey,
Lempp and Shore [2]. As expected, our construction contains new features in the gap–cogap argument, where after a gap
is closed unsuccessfully, it can be opened again, due to the changes of A. Theorem 1.1 is strong enough, it can have all the
known high2 nonboundings as corollaries.

Corollary 1.2. (See Downey, Lempp and Shore [2].) There is a high2 r.e. degree bounding no minimal pairs.
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Let a be a nonbounding degree (see Soare [12]), and apply Theorem 1.1 to a and the obtained c is a high2 nonbounding
degree.

In contrast to noncuppable degrees, Harrington proposed the notion of plus-cupping degrees, where a nonzero r.e. degree
a is plus-cupping if for every nonzero r.e. degree b below a and for every r.e. degree c above a, there is an r.e. degree d
below c such that b ∪ d = c (Soare [12, p. 387]). By applying a 0′′′ argument, Harrington was able to show the existence
of plus-cupping degrees. In [4], Fejer and Soare rephrased the concept of plus-cupping by restricting c to 0′ , which is weak
version of Harrington’s plus-cupping. It turns out that the construction of Fejer–Soare’s plus-cupping degree is easier, and is
now a standard illustration of gap–cogap arguments. We apply Theorem 1.1 to Harrington plus-cupping degrees. Note that
the existence of a high2 Harrington plus-cupping degrees was used by Li to show that the class of high r.e. degrees and the
class of highn-degrees (n � 2) are not elementarily equivalent.

Corollary 1.3. Above any Harrington plus-cupping degree, there is a high2 Harrington plus-cupping degree.

We can also treat Harrington plus-cupping degrees and Fejer–Soare’s plus-cupping degrees as nonbounding phenomenon.
For instance, if a is a Fejer–Soare’s plus-cupping degree, then it bounds no nonzero noncuppable degrees.

In [7], Leonhardi considered Slaman triples and proposed a new nonbounding. Here we say that r.e. degrees a, b, c form
a Slaman triple, if a > 0, c � b and for any w � a, if w > 0, then w ∪ c � b. a is called the base of this Slaman triple.

Corollary 1.4. (See Leonhardi [7].) There is a high2 degree bounding no bases of Slaman triples.

Again, if we have a nonzero r.e. degree a bounding no bases of Slaman triples, then by applying Theorem 1.1 to a, we
can get a high2 one.

Furthermore, Theorem 1.1 can be applied to obtain some new results: no nonbounding degrees mentioned above can be
maximal.

Theorem 1.5. There are no maximal nonbounding degrees for minimal pairs (first proved by Seetapun), plus-cupping degrees (both
versions), and bases for Slaman triples, respectively.

Theorem 1.1 can be used as a scheme for constructing high2 nonbounding degrees. That is, in general, if we have a
property P about the r.e. degrees, we say that an r.e. degree a has plus-P property, if for any nonzero r.e. degree b � a,
P (b) is also true.

Theorem 1.6. Suppose that P is a closed-upwards property in the r.e. degrees. If a has plus-P property, then above a, there is a high2
degree c with plus-P property.

The proof of Theorem 1.6 is quite easy. By Theorem 1.1, there exists a high2 degree c > a witnessing the a is noncappable
below c.

We claim that c has plus-P property. Suppose not. Then there is a nonzero r.e. degree b < c which does not have
property P . Then a and b form a minimal pair, as otherwise, there exists a nonzero r.e. degree w below both a and b,
and hence, due to the assumption that a has plus-P property, w has P property, which implies that b has P property.
A contradiction.

However, by the choice of c, a is noncappable below c, we get another contradiction. This shows that c has plus-P
property.

Besides this, by applying almost the same argument, we can apply Theorem 1.1 to prove the continuity of capping
property of r.e. degrees, which was first proved by Harrington and Soare in [6].

Corollary 1.7. For any r.e. degrees a and b, if a and b form a minimal pair, then there exists a high2 degree c above b such that c and a
form a minimal pair.

The continuity property of bases of Slaman triples is also true.

Corollary 1.8. If (a,b, c) form a Slaman triple, then there is a high2 r.e. degree e above a such that (e,b, c) also form a Slaman triple.

Note that Theorem 1.1 is optimal, as there is no way to make the witness c high2. To see this, let a be a nonzero r.e.
degree bounding no minimal pairs, then c also bounds no minimal pairs, which implies that c cannot be high, as each high
r.e. degree bounds a minimal pair, by Cooper [1] and Shore and Slaman [11].

We notice that Downey and Stob proved in 1997 in [3] that any nonzero incomplete c.e. degree c is a witness of local
noncappability of a c.e. degree a below c.

Our notation and terminology are standard and generally follow Odifreddi [9] and Soare [12]. We say that a number is
big in the construction if it is the least natural number (in an effective way) greater than any numbers mentioned so far.
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