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The main result of this paper states that the isomorphism problem for ω-automatic trees
of finite height is at least has hard as second-order arithmetic and therefore not analytical.
This strengthens a recent result by Hjorth, Khoussainov, Montalbán, and Nies (2008) [12]
showing that the isomorphism problem for ω-automatic structures is not in Σ1

2 . Moreover,
assuming the continuum hypothesis CH, we can show that the isomorphism problem for
ω-automatic trees of finite height is recursively equivalent with second-order arithmetic.
On the way to our main results, we show lower and upper bounds for the isomorphism
problem for ω-automatic trees of every finite height: (i) It is decidable (Π0

1 -complete,
resp.), for height 1 (2, resp.), (ii) Π1

1 -hard and in Π1
2 for height 3, and (iii) Π1

n−3- and

Σ1
n−3-hard and in Π1

2n−4 (assuming CH) for height n � 4. All proofs are elementary and do
not rely on theorems from set theory.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A graph is computable if its domain is a computable set of natural numbers and the edge relation is computable as well.
Hence, one can compute effectively in the graph. On the other hand, practically all other properties are undecidable for com-
putable graphs (e.g., reachability, connectedness, and even the existence of isolated nodes). In particular, the isomorphism
problem is highly undecidable in the sense that it is complete for Σ1

1 (the first existential level of the analytical hierar-
chy [25]); see e.g. [5,10] for further investigations of the isomorphism problem for computable structures. These algorithmic
deficiencies have motivated in computer science the study of more restricted classes of finitely presented infinite graphs.
For instance, pushdown graphs, equational graphs, and prefix recognizable graphs have a decidable monadic second-order
theory and for the former two the isomorphism problem is known to be decidable [7] (for prefix recognizable graphs the
status of the isomorphism problem seems to be open).

Automatic graphs [16] are in between prefix recognizable and computable graphs. In essence, a graph is automatic if the
elements of the universe can be represented as strings from a regular language and the edge relation can be recognized
by a finite state automaton with several heads that proceed synchronously. Automatic graphs (and more general, automatic
structures) received increasing interest over the last years [3,13,17,18,29,1]. One of the main motivations for investigating
automatic graphs is that their first-order theories can be decided uniformly (i.e., the input is an automatic presentation
and a first-order sentence). On the other hand, the isomorphism problem for automatic graphs is Σ1

1 -complete [17] and
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hence as complex as for computable graphs (see [23] for the recursion theoretic complexity of other natural properties of
automatic graphs).

In our recent paper [21], we studied the isomorphism problem for restricted classes of automatic graphs. Among other
results, we proved that: (i) the isomorphism problem for automatic trees of height at most n � 2 is complete for the level
Π0

2n−3 of the arithmetical hierarchy, (ii) that the isomorphism problem for well-founded automatic order trees is recursively
equivalent to true arithmetic, and (iii) that the isomorphism problem for automatic order trees is Σ1

1 -complete. In this
paper, we extend our techniques from [21] to ω-automatic trees. The class of ω-automatic structures was introduced in [2];
it generalizes automatic structures by replacing ordinary finite automata by Büchi-automata on ω-words. In this way, un-
countable graphs can be specified. Some recent results on ω-automatic structures can be found in [22,12,14,19]. On the
logical side, many of the positive results for automatic structures carry over to ω-automatic structures [2,14]. On the other
hand, the isomorphism problem of ω-automatic structures is more complicated than that of automatic structures (which is
Σ1

1 -complete). Hjorth et al. [12] constructed two ω-automatic structures for which the existence of an isomorphism depends
on the axioms of set theory. Using Schoenfield’s absoluteness theorem, they infer that isomorphism of ω-automatic struc-
tures does not belong to Σ1

2 . The extension of our elementary techniques from [21] to ω-automatic trees allows us to show
directly (without a “detour” through set theory) that the isomorphism problem for ω-automatic trees of finite height is not
analytical (i.e., does not belong to any of the levels Σ1

n ). For this, we prove that the isomorphism problem for ω-automatic
trees of height n � 4 is hard for both levels Σ1

n−3 and Π1
n−3 of the analytical hierarchy (our proof is uniform in n). A more

precise analysis moreover reveals at which height the complexity jump for ω-automatic trees occurs: For automatic as well
as for ω-automatic trees of height 2, the isomorphism problem is Π0

1 -complete and hence arithmetical. But the isomor-
phism problem for ω-automatic trees of height 3 is hard for Π1

1 (and therefore outside of the arithmetical hierarchy) while
the isomorphism problem for automatic trees of height 3 is Π0

3 -complete [21]. Our lower bounds for ω-automatic trees
even hold for the restricted class of injectively ω-automatic trees.

We prove our results by reductions from monadic second-order (fragments of) number theory. The first step in the proof
is a normal form for analytical predicates. The basic idea of the reduction then is that a subset X ⊆ N can be encoded
by an ω-word w X over {0,1}, where the i-th symbol is 1 if and only if i ∈ X . The combination of this basic observation
with our techniques from [21] allows us to encode monadic second-order formulas over (N,+,×) by ω-automatic trees of
finite height. This yields the lower bounds mentioned above. We also give an upper bound for the isomorphism problem:
for ω-automatic trees of height n, the isomorphism problem belongs to Π1

2n−4. While the lower bound holds in the usual
system ZFC of set theory, we can prove the upper bound only assuming in addition the continuum hypothesis. The precise
recursion theoretic complexity of the isomorphism problem for ω-automatic trees remains open, it might depend on the
underlying axioms for set theory.

Related work. Results on isomorphism problems for various subclasses of automatic structures can be found in [17,18,
21,28]. Some completeness results for low levels of the analytical hierarchy for decision problems on infinitary rational
relations were shown in [8]. In [9], it was shown that the isomorphism problems for ω-tree-automatic boolean algebras,
(commutative) rings, and nilpotent groups of class n > 1 neither belong to Σ1

2 nor to Π1
2 .

2. Preliminaries

Let N+ = {1,2,3, . . .} be the set of naturals without 0. With x we denote a tuple (x1, . . . , xm) of variables, whose length
m does not matter.

2.1. The analytical hierarchy

In this paper we follow the definitions of the arithmetical and analytical hierarchy from [25]. In order to avoid some
technical complications, it is useful to exclude 0 in the following, i.e., to consider subsets of N+ . In the following, f i ranges
over unary functions on N+ , Xi over subsets of N+ , and u, x, y, z, xi, . . . over elements of N+ . The class Σ0

n ⊆ 2N+ is the
collection of all sets A ⊆ N+ of the form

A = {
x ∈N+

∣∣ (N,+,×) |� ∃y1∀y2 · · · Q y1
n, y2

n, . . . , ym
n : ϕ

(
x, y1, . . . , y1

n, y2
n, . . . , ym

n

)}
,

where Q = ∀ (resp. Q = ∃) if n is even (resp. odd) and ϕ is a quantifier-free formula over the signature containing + and ×.
The class Π0

n is the class of all complements of Σ0
n sets. The classes Σ0

n ,Π0
n (n � 1) make up the arithmetical hierarchy.

The analytical hierarchy extends the arithmetical hierarchy and is defined analogously using function quantifiers:
The class Σ1

n ⊆ 2N+ is the collection of all sets A ⊆N+ of the form

A = {
x ∈N+

∣∣ (N,+,×) |� ∃ f1∀ f2 · · · Q fn: ϕ(x, f1, . . . , fn)
}
, (1)

where Q = ∀ (resp. Q = ∃) if n is even (resp. odd) and ϕ is a first-order formula over the signature containing +, ×,
and the functions f1, . . . , fn . The class Π1

n is the class of all complements of Σ1
n sets. The classes Σ1

n ,Π1
n (n � 1) make up
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