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Just as intuitionistic proofs can be modeled by functions, linear logic proofs, being
symmetric in the inputs and outputs, can be modeled by relations (for example,
cliques in coherence spaces). However generic relations do not establish any
functional dependence between the arguments, and therefore it is questionable
whether they can be thought as reasonable generalizations of functions. On the
other hand, in some situations (typically in differential calculus) one can speak in
some precise sense about an implicit functional dependence defined by a relation.
It turns out that it is possible to model linear logic with implicit functions rather
than general relations, an adequate language for such a semantics being (elementary)
differential calculus. This results in a non-degenerate model enjoying quite strong
completeness properties.

© 2013 Published by Elsevier B.V.

1. Introduction

Linear logic (LL), introduced by J.-Y. Girard in the late eighties [10], has become an extremely popular
subject. One of the attractive features of this system consists in combining its constructive nature (a possi-
bility of functional interpretation of proofs), typical for intuitionistic logic, with the familiar symmetries of
classical logic, such as the involutivity of negation and De Morgan dualities between connectives.

From the constructive point of view, a proof should be understood as a function, or, in more modern and
general terms, a morphism, that can be composed with other proofs. Typically, proofs of the implications
A → B and B → C can be composed to yield a proof of A → C (the rule of syllogism). Thus one can
think of a category, whose objects are formulas, and whose morphisms are equivalence classes of proofs.
In other words, one assumes existence of an equivalence relation on proofs that turns the set of proofs and
formulas into a well-defined category. However such a functional interpretation is non-trivial only if there
exist hom-sets with more than one element, in other words if there exist formulas with several non-equivalent
proofs.

This is the case for intuitionistic logic, whose proofs can indeed be interpreted as functions (say, λ-terms).
In this sense, intuitionistic logic is constructive, in fact a prototype of a constructive logic. Whereas classical
logic admits only a degenerate categorical interpretation, defined by declaring all proofs of the same formula
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equivalent [14], pp. 67–116. (The corresponding category is the Boolean algebra of provably equivalent
formulas.) On the other hand, classical logic enjoys a number of attractive symmetries, such as the duality
between connectives, the involutive negation, the law of excluded middle — all of which are lost in the
intuitionistic case.

Linear logic combines the constructive nature of intuitionistic logic and the symmetries of classical logic.
This is achieved by taking control over unlimited use of hypotheses. In LL each hypothesis in the proof
should be used only once and exactly once. (In this paper we discuss only the so-called multiplicative
fragment of linear logic (MLL). The interested reader can find an introduction to the full linear logic for
example in [12].)

1.1. Denotational semantics

A denotational model of a constructive logic is a category where one can interpret formulas as objects and
proofs as morphisms, preserving the internal categorical structure of the logic (connectives, rules, axioms,
etc.). Finding denotational models is the problem of denotational semantics.

Intuitionistic logic, for example, can be interpreted simply in the category of sets and functions (although
this is not a best model). Thus intuitionistic proofs, seen as λ-terms, represent “general” functions in quite
a literal sense. On the other hand a functional explanation of linear logic is not completely obvious. Linear
logic proofs are symmetric in the input and the output, and general functions are not. Thus linear logic
proofs may correspond only to very special functions (such as linear operators) or to something more general
than “general” functions. Thinking of relations as natural generalizations of functions, one often interprets
linear logic proofs as relations. (This tradition goes back to Girard’s work on quantitative semantics [11].
In such a semantics sets play the role of bases of vector spaces, and relations are analogous to matrices.
In this paper we take somewhat more primitive view of relations, not anticipating any analogies with linear
algebra.)

We note that LL cannot be characterized as the “general” logic of relations, the relational interpretation
being very degenerate. Such an interpretation fails to capture much of the structure of LL, and perhaps
this can be explained as follows. Linear logic proofs mix inputs and outputs indefinitely, and, thus, hide the
correspondence between them. However such a correspondence is always present implicitly — for example in
the form of identity links connecting dual literals in a proof-net. On the other hand a general relation does
not imply any dependence between the arguments. A relation, coming from an actual LL-proof, always has
the form of an implicit function — some of the arguments can be expressed as functions of the remaining
ones.

This observation suggests the idea of modeling LL by means of implicit functions, typically in the setting
of differential calculus, where a relevant theory is well developed. In differential geometry, relations, defining
implicit functions, are supported at smooth submanifolds. Motivated by the above arguments, we develop
a special relational interpretation of (multiplicative) linear logic, where proofs are modeled by smooth
relations, i.e. by smooth submanifolds.

Such an interpretation however does not come for free from the usual relational semantics. One should
specify the target category for the interpretation, and this is not completely trivial. An important phe-
nomenon arising in the smooth setting is that smooth relations do not compose in general, i.e. the
set-theoretic composition of smooth relations may fail to be smooth. In other words, smooth relations
themselves do not form a category.

In order to get a well-defined denotational model, we interpret formulas as spaces (vector spaces or
differentiable manifolds), equipped with a certain extra structure that we call the smooth coherence space
structure, since, in some sense, it looks like a “smoothing” of the familiar coherence space structure of
Girard. The extra structure (technically, two conic subsets of tangent/cotangent vectors) plays the role of
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