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Dependence logic, introduced in Väänänen (2007) [11], cannot be axiomatized. However,
first-order consequences of dependence logic sentences can be axiomatized, and this is
what we shall do in this paper. We give an explicit axiomatization and prove the respective
Completeness Theorem.
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1. Introduction

Dependence logic was introduced in [11]. It extends ordinary first-order logic by new atomic formulas = (x1, . . . , xn, y)

with the intuitive meaning that the values of the variables x1, . . . , xn completely determine the value of y is. This means
that the relevant semantic game is a game of imperfect information. A player who picks y and claims that her strategy is
a winning strategy should make the choice so that if the strategy is played twice, with the same values for x1, . . . , xn , then
the value of y is the same as well. Dependence logic cannot be axiomatized, for the set of its valid formulas is of the same
complexity as that of full second-order logic. However, the first-order consequences of dependence logic sentences can be
axiomatized. In this paper we give such an axiomatization.

Let us quickly review the reason why dependence logic cannot be effectively axiomatized. Consider the sentence

θ1: ∃z∀x∃y
(= (y, x) ∧ ¬y = z

)
.

We give the necessary preliminaries about dependence logic in the next section, but let us for now accept that θ1 is true in
a model if and only if the domain of the model is infinite. The player who picks y has to pick a different y for different x.
Although dependence logic does not have a negation in the sense of classical logic, the mere existence of θ1 in dependence
logic should give a hint that axiomatization is going to be a problem. Elaborating but a little, θ1 can be turned into a
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sentence θ2 in the language of arithmetic which says that some elementary axioms of number theory fail or else some
number has infinitely many predecessors. We can now prove that a first-order sentence φ of the language of arithmetic
is true in (N,+,×,<) if and only if θ2 ∨ φ is logically valid (true in every model) in dependence logic. This can be seen
as follows: Suppose first φ is true in (N,+,×,<). Let us take an arbitrary model M of the language of arithmetic. If
M |� θ2, we may conclude M |� θ2 ∨φ. So let us assume M �|� θ2. Thus M satisfies the chosen elementary axioms of number
theory and every element has only finitely many predecessors. As a consequence, M ∼= (N,+,×,<), so M |� φ, and again
M |� θ2 ∨ φ. For the converse, suppose θ2 ∨ φ is logically valid. Since (N,+,×,<) fails to satisfy θ2, we must conclude that
φ is true in (N,+,×,<).

The above inference demonstrates that truth in (N,+,×,<) can be reduced to logical validity in dependence logic. Thus,
by Tarski’s Undefinability of Truth argument, logical validity in dependence logic is non-arithmetical, and there cannot be
any (effective) complete axiomatization of dependence logic.

The negative result just discussed would seem to frustrate any attempt to axiomatize dependence logic. However, there
are at least two possible remedies. The first is to modify the semantics—this in the line adopted in Henkin’s Completeness
Theorem for second-order logic. For dependence logic this direction is taken in Galliani [5]. The other remedy is to restrict
to a fragment of dependence logic. This is the line of attack of this paper. We restrict to logical consequences T |� φ, in
which T is in dependence logic but φ is in first-order logic.

The advantage of restricting to T |� φ, with first-order φ, is that we can reduce the Completeness Theorem, assuming
that T ∪ {¬φ} is deductively consistent, to the problem of constructing a model for T ∪ {¬φ}. Since dependence logic
can be translated to existential second-order logic, the construction of a model for T ∪ {¬φ} can in principle be done in
first-order logic, by translating T to first-order by using new predicate symbols. This observation already shows that T |� φ,
for first-order φ, can in principle be axiomatized. Our goal in this paper is to give an explicit axiomatization.

The importance of an explicit axiomatization over and above the mere knowledge that an axiomatization exists, is
paramount. The axioms and rules that we introduce throw light in a concrete way on logically sound inferences concerning
dependence concepts. It turns out, perhaps unexpectedly, that fairly simple albeit non-trivial axioms and rules suffice.

Our axioms and rules are based on Barwise [2], where approximations of Henkin sentences, sentences which start with
a partially ordered quantifier, are introduced. The useful method introduced by Barwise builds on earlier work on game
formulas by Svenonius [10] and Vaught [13].

By axiomatizing first-order consequences we get an axiomatization of inconsistent dependence logic theories as a bonus,
contradiction being itself expressible in first-order logic. The possibility of axiomatizing inconsistency in IF logic—a relative
of dependence logic—has been emphasized by Hintikka [7].

The structure of the paper is the following. After the preliminaries we present our system of natural deduction in
Section 3. In Section 4 we give a rather detailed proof of the Soundness of our system, which is not a priori obvious.
Section 5 is devoted to the proof, using game formulas and their approximations, of the Completeness Theorem. The final
section gives examples and open problems.

The second author is indebted to John Burgess for suggesting the possible relevance for dependence logic of the work of
Barwise on approximations of Henkin formulas.

2. Preliminaries

In this section we define Dependence Logic (D) and recall some basic results about it.

Definition 1. (See [11].) The syntax of D extends the syntax of FO, defined in terms of ∨, ∧, ¬, ∃ and ∀, by new atomic
formulas (dependence atoms) of the form

= (t1, . . . , tn), (1)

where t1, . . . , tn are terms. For a vocabulary τ , D[τ ] denotes the set of τ -formulas of D.

The intuitive meaning of the dependence atom (1) is that the value of the term tn is functionally determined by the
values of the terms t1, . . . , tn−1. As singular cases we have = () which we take to be universally true, and = (t) meaning
that the value of t is constant.

The set Fr(φ) of free variables of a formula φ ∈D is defined as for first-order logic, except that we have the new case

Fr
(= (t1, . . . , tn)

) = Var(t1) ∪ · · · ∪ Var(tn),

where Var(ti) is the set of variables occurring in the term ti . If Fr(φ) = ∅, we call φ a sentence.
In order to define the semantics of D, we first need to define the concept of a team. Let A be a model with domain A.

Assignments of A are finite mappings from variables into A. The value of a term t in an assignment s is denoted by tA〈s〉.
If s is an assignment, x a variable, and a ∈ A, then s(a/x) denotes the assignment (with domain Dom(s) ∪ {x}) which agrees
with s everywhere except that it maps x to a.

Let A be a set and {x1, . . . , xk} a finite (possibly empty) set of variables. A team X of A with domain Dom(X) =
{x1, . . . , xk} is any set of assignments from the variables {x1, . . . , xk} into the set A. We denote by rel(X) the k-ary rela-
tion of A corresponding to X
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