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A class of models is presented, in the form of continuation monads polymorphic for
first-order individuals, that is sound and complete for minimal intuitionistic predicate
logic (including disjunction and the existential quantifier). The proofs of soundness and
completeness are constructive and the computational content of their composition is, in
particular, a β-normalisation-by-evaluation program for simply typed lambda calculus with
sum types. Although the inspiration comes from Danvy’s type-directed partial evaluator
for the same lambda calculus, the use of delimited control operators (i.e. computational
effects) is avoided. The role of polymorphism is crucial – dropping it allows one to obtain
a notion of model complete for classical predicate logic.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Although Kripke models are standard semantics for intuitionistic logic, there is as yet no (simple) constructive proof of
their completeness when one considers all the logical connectives. While Kripke’s original proof [25] was classical, Veldman
gave an intuitionistic one [32] by using Brouwer’s Fan Theorem to handle disjunction and the existential quantifier. To see
what the computational content behind Veldman’s proof is, one might consider a realisability interpretation of the Fan
Theorem (for example [5]), but, all known realisers being defined by general recursion, due to the absence of an elementary
proof of their termination, it is not clear whether one can think of the program using them as a constructive proof or not.

On the other hand, a connection between normalisation-by-evaluation (NBE) [6] for simply typed lambda calculus, λ→ ,
and completeness of minimal intuitionistic logic for Kripke models for the fragment {∧,⇒,∀} has been made [8,19]. We
review this connection in Section 2. There, we also revisit Danvy’s extension [10] of NBE from λ→ to λ→∨ , simply typed
lambda calculus with sum types. Even though Danvy’s algorithm is simple and elegant, he uses the full power of delimited
control operators which do not yet have a typing system that permits to understand that use logically. We deal with
that problem in Section 3, by modifying the notion of Kripke model so that we can give a proof of completeness for
full intuitionistic logic in continuation-passing style, that is, without relying on having delimited control operators in our
meta-language. In Section 4, we extract the algorithm behind the given completeness proof, a β-NBE algorithm for λ→∨ . In
Section 5, we stress the importance of our models being parametric, by comparing them to similar models that are complete
for classical logic [23]. We conclude with Section 6, where we also mention related work.

The proofs of Section 3 have been formalised in the Coq proof assistant in [20], which also represents an implementation
of the NBE algorithm of Section 4.
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2. Normalisation-by-evaluation as completeness

In [6], Berger and Schwichtenberg presented a proof of normalisation of λ→ which does not involve reasoning about the
associated reduction relation. Instead, they interpreted λ-terms in a domain, or ambient meta-language, using an evaluation
function,

[[−]] : Λ → D,

and then they defined an inverse to this function, which from the denotation in D directly extracts a term in βη-long
normal form. The inverse function ↓, called reification, is defined by recursion on the type τ of the term, at the same time
with an auxiliary function ↑, called reflection:

↓τ : D → Λ-nf

↓τ := a 	→ a τ -atomic

↓τ→σ := S 	→ λa.↓σ
(

S · ↑τ a
)

a-fresh

↑τ : Λ-ne → D

↑τ := a 	→ a τ -atomic

↑τ→σ := e 	→ S 	→ ↑σ e
(↓τ S

)
Here, S ranges over members of D , and we used 	→ and · for abstraction and application at the meta-level. The classes of
neutral (Λ-ne) and λ-terms in normal form (Λ-nf) are given by the following inductive definition.2

Λ-nf 
 r := λaτ .rσ | eτ λ-terms in normal form

Λ-ne 
 e := aτ | eτ→σ rτ neutral λ-terms

It was a subsequent realisation of Catarina Coquand [8], that the evaluation algorithm [[·]] is also the one underlying the
Soundness Theorem for minimal intuitionistic logic (with ⇒ as the sole logical connective) with respect to Kripke models,
and that the reification algorithm ↓ is also the one underlying the corresponding Completeness Theorem.

More precisely, the following well-known statements hold and their proofs have been machine-checked [9,19] for the
logic fragment generated by the connectives {⇒,∧,∀}.

Definition 2.1. A Kripke model is given by a preorder (K ,�) of possible worlds, a quantification domain D(w) for every w ∈ K ,
and a relation of forcing, w � X , that interprets the predicate X(x1, . . . , xn) in the world w by an n-ary relation on D(w),
such that,

for all w ′ � w, D(w) ⊆ D
(

w ′), and

for w ′ � w, d1, . . . ,dn ∈ D(w), (w � X)(d1, . . . ,dn) → (
w ′ � X

)
(d1, . . . ,dn).

The relation of forcing is then extended to all formulae by the following clauses, using an explicit superscript σ substitution
necessary for a precise handling of quantifiers:

w �σ X(x1, . . . , xn) := (w � X)(d1, . . . ,dn), when σ = {x1 	→ d1, . . . , xn 	→ dn}
w �σ A ∧ B := w �σ A and w �σ B

w �σ A ∨ B := w �σ A or w �σ B

w �σ A ⇒ B := for all w ′ � w, w ′ �σ A → w ′ �σ B

w �σ ∀x.A(x) := for all w ′ � w and d ∈ D
(

w ′), w ′ �σ ,x	→d A(x)

w �σ ∃x.A(x) := for some d ∈ D(w), w �σ ,x	→d A(x)

w �σ ⊥ := false

w �σ � := true

We write w �σ Γ when w forces each formula of Γ . We write σ ∈ D(w) to emphasise that all interpretations of individuals
from σ live in D(w).

2 Neutral terms are the subset of normal terms that cannot be reduced on their own, whose reduction is blocked because of a free-variable appearance.
Closed λ→-terms always reduce to closed terms in normal form, never to neutral terms.
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