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Calculi with control operators have been studied as extensions of simple type theory. Real
programming languages contain datatypes, so to really understand control operators, one
should also include these in the calculus. As a first step in that direction, we introduce λμT,
a combination of Parigot’s λμ-calculus and Gödel’s T, to extend a calculus with control
operators with a datatype of natural numbers with a primitive recursor.
We consider the problem of confluence on raw terms, and that of strong normalization
for the well-typed terms. Observing some problems with extending the proofs of Baba
et al. and Parigot’s original confluence proof, we provide new, and improved, proofs of
confluence (by complete developments) and strong normalization (by reducibility and a
postponement argument) for our system.
We conclude with some remarks about extensions, choices, and prospects for an improved
presentation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In pursuit, on the one hand, of a satisfactory equational theory of call-by-value λ-calculus, and on the other, of a means
to interpret the computational content of classical proofs, a variety of calculi with control operators have been proposed.
Few of these systems address the problem of how to incorporate primitive datatypes in direct style, preferring instead to
consider the usual Church encoding of datatypes or else to analyze computation over datatypes via CPS-translations.

In part this appears to arise because of the technical difficulty in getting standard results such as confluence or strong
normalization, and their proof methods, either for classical calculi, or for simply-typed calculi with datatypes, to extend to
their combination.

This paper introduces a new λ-calculus with control, λμT , in which for example constructs for catch and throw may
be represented, which moreover has a basic datatype of natural numbers with a primitive recursor, in the style of Gödel’s T.
We demonstrate that it is possible to achieve a synthesis of classical computation with datatypes with a conventional
metatheory of typing and reduction. To show how the system can be used in programming, we give a simple example
in 3.16, where we define a function that multiplies the first n values of f : N → N and throws an exception as soon as it
encounters the value 0.

1.1. Our approach

Since Lafont’s counterexample [19], it is well known that a calculus providing a general content to classical logic cannot
be confluent. It only may become confluent if one adds an evaluation strategy (call-by-name or call-by-value). To define
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a calculus with control operators and datatypes we have therefore observed a tension between the call-by-name features
taken directly from Parigot’s λμ-calculus, and the need to add certain call-by-value features to obtain a system that is
confluent and satisfies a normal form theorem (each closed term of type N is convertible to a numeral). The λμT-calculus is
therefore a call-by-name system with strict evaluation on datatypes. To avoid losing a normal form theorem, we could not
make it a full call-by-name system, and to avoid losing confluence we had to restrict the primitive recursor to only allow
conversion when the numerical argument is a numeral.

Given these technical considerations, we were able to prove that λμT satisfies subject reduction, has a normal form
theorem, is confluent and strongly normalizing. The last two proofs are non-trivial because various niceties are required to
make the standard proof methods work.

Our confluence proof uses the notion of parallel reduction and defines a complete development for each term. Surpris-
ingly, it was difficult to find a confluence proof for the original untyped λμ-calculus. Baba, Hirokawa and Fujita [3] have
given a confluence proof for λμ without the →μη-rule (μα.[α]t → t provided that α /∈ FCV(t)). Although they suggest how
to extend parallel reduction for the →μη-rule, they do not provide a formal definition of the complete development nor a
proof. Nakazawa [25] has successfully carried out their suggestion for a call-by-value variant of λμ , but does not use the
notion of complete development. Walter Py’s PhD thesis [31] was the only place where we have found a complete proof of
confluence for λμ . It uses Aczel’s generalization of parallel reduction [1] and a number of postponement arguments. In the
present paper we extend the methodology of [3] to the case of λμT , which also includes the →μη-rule.

Our strong normalization proof proceeds by defining relations →A and →B such that → = →AB := →A ∪ →B . First
we prove that →A is strongly normalizing by the reducibility method. Secondly, we prove that →B is strongly normalizing
and that both reductions commute in a way that we can obtain strong normalization for →AB . The first phase is inspired
by Parigot’s proof of strong normalization for the λμ-calculus [29].

1.2. Related work

The extension of simply typed lambda calculus with control operators and the observation that these operators can be
typed using the rules of classical logic is originally due to Griffin [20] and has lead to a lot of research [27,28,14,32,7,10,4,
2,37], by considering variations on the control operators, the underlying calculus or the computation rules, or by studying
concrete examples of the computational content of proofs in classical logic. The λμ-calculus of Parigot [27] has become a
central starting point for much research in this area.

The extension with datatypes, to make the calculus into a real programming language with control operators, has not
received so much attention. We briefly summarize the research done in this direction and compare it with our work.

Murthy has defined a system with control operators, arithmetic, products and sums in his PhD thesis [24]. His system
uses the control operators C and A (originally due to [20]) and the semantics of these operators is specified by evaluation
contexts rather than local reduction rules, as we do. So his system does not really describe a calculus for datatypes and
control. Furthermore, Murthy mainly considers CPS-translations to give an operational semantics of his system and did not
prove properties like confluence or strong normalization.

Crolard and Polonowski have considered a version of Gödel’s T with products and call/cc [12]. As with Murthy,
the semantics is presented by CPS-translations instead of a direct specification via a calculus. Therefore properties like
confluence and strong normalization are trivial because they hold for the target system already.

Barthe and Uustalu have worked on CPS-translations for inductive and coinductive types [5]. Their work includes a sys-
tem with a primitive for iteration over the natural numbers and the control operator �. Unfortunately only some properties
of CPS-translations are proven.

Rehof and Sørensen have described an extension of the λ�-calculus with basic constants and functions [32]. Unfortu-
nately their extension is quite limited. For example the primitive recursor nrec takes terms, rather than basic constants, as
its arguments. Their extension does not allow this, making it impossible to define nrec.

Parigot has described a second-order variant of his λμ-calculus [27]. This system is very powerful, because it includes
all the well-known second-order representable datatypes. However, it suffers from the same weakness as System F, namely
poor computational efficiency (for example, an O (n)-predecessor function). Also, as observed in [27,28], this system does
not ensure unique representation of datatypes. For example, there is no one-to-one correspondence between natural numbers
and closed normal forms of the type of Church numerals.

There have been various investigations into concrete examples of computational content of classical proofs. Coquand gives
an overview in his notes [10]. An earlier example is [7], where a binpacking problem is analyzed using proof transformations.
More recent work is by Makarov [23], who takes Griffin’s calculus and adds various rules to optimize the extracted program.

If we look in particular at Gödel’s T, Berger, Buchholz and Schwichtenberg have described a form of program extraction
from classical proofs [6]. Their method extracts a term from a classical proof in which all computationally irrelevant parts
are removed. To prove the correctness of their approach they give a realizability interpretation. However, since their target
language is Gödel’s T, extracted programs do not contain control mechanisms.

Caldwell, Gent and Underwood have considered program extraction from classical proofs in the proof assistant NuPrl [8].
In their work they extend NuPrl with a proof rule for Peirce’s law and they associate call/cc to the extraction of Peirce’s
law. Now, program extraction indeed results in a program with control. The main focus of their work is on using program
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