

Contents lists available at SciVerse ScienceDirect

Annals of Pure and Applied Logic

journal homepage: www.elsevier.com/locate/apal

The uniform boundedness theorem and a boundedness principle

Hajime Ishihara

School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan

ARTICLE INFO

Article history:
Available online 31 December 2011

MSC: 03F60 46S30

Keywords: Constructive mathematics Topological vector space The uniform boundedness theorem Boundedness principle

ABSTRACT

We deal with a form of the uniform boundedness theorem (or the Banach–Steinhaus theorem) for topological vector spaces in Bishop's constructive mathematics, and show that the form is equivalent to the boundedness principle BD-N, and hence holds not only in classical mathematics but also in intuitionistic mathematics and in constructive recursive mathematics. The result is also a result in constructive reverse mathematics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The notion of a topological vector space, as a generalization of the notion of a normed space, is a very important notion to investigate function spaces, such as the space of test functions, which do not form Banach spaces (see, for example, [23]). Nonetheless little investigation on topological vector spaces has been done in Bishop's constructive mathematics [6–8,10]; see also a discussion in [6, Appendix A]. We can only find, noting that a topological vector space is a uniform space, a constructive concept of a uniform space with a set of pseudometrics, and basic theorems, such as, that arbitrary uniform space has a completion, in [6, Problems 17 to 21 of Chapter 4]; see also [7, Problems 22 to 26 of Chapter 4], and [9,24,12,11, 17,5] for other constructive treatments of a uniform space.

However, using the notion of a neighbourhood space [6, 3.3] (see also [7, 3.3]) introduced by Bishop, we can naturally define a notion of a topological vector space in Bishop's constructive mathematics as follows.

A *neighbourhood space* is a pair (X, τ) consisting of a set X and a set τ of subsets of X such that

```
NS1. \forall x \in X \exists U \in \tau(x \in U),
NS2. \forall x \in X \forall U, V \in \tau[x \in U \cap V \implies \exists W \in \tau(x \in W \subseteq U \cap V)].
```

The set τ is an open base on X, and an element of τ is a basic open set. A subset of X is open if it is a union of basic open sets. A neighbourhood of a point $x \in X$ is a subset $A \subseteq X$ such that $x \in U \subseteq A$ for some $U \in \tau$. An open base σ on X is compatible with τ if each neighbourhood in σ is a neighbourhood in τ , and vice versa. An open base is compatible with a metric d if it is compatible with the open base induced by open balls. A function f between neighbourhood spaces (X, τ) and (Y, σ) is continuous if $f^{-1}(V)$ is open for each $V \in \sigma$.

A topological vector space is a vector space E equipped with an open base τ such that the vector space operations, addition $(x,y)\mapsto x+y$ and scalar multiplication $(a,x)\mapsto ax$, are continuous, that is, if U is a neighbourhood of x+y, then there exist neighbourhoods V and V' of x and y, respectively, such that $V+V'=\{v+v'\mid v\in V, v'\in V'\}\subseteq U$, and if U is a neighbourhood of ax, then for some $\delta>0$ and some neighbourhood V of x we have $bV=\{bv\mid v\in V\}\subseteq U$ whenever

 $|a-b| < \delta$. It is *metrizable* if τ is compatible with some metric d, and is an F-space if its open base τ is compatible with a complete invariant metric d. Here a metric d on a vector space E is *invariant* if d(x+z,y+z) = d(x,y) for all $x,y,z \in E$.

In this paper, we deal with the following form of the uniform boundedness theorem (or the Banach–Steinhaus theorem) for topological vector spaces [23, 2.6] in Bishop's constructive mathematics.

The Uniform Boundedness Theorem. If $(T_m)_m$ is a sequence of continuous linear mappings from an F-space E into a topological vector space F such that the set

$$\{T_m x \mid m \in \mathbf{N}\}$$

is bounded in F for each $x \in E$, then $(T_m)_m$ is equicontinuous.

Here a subset A of a topological vector space E is bounded if for each neighbourhood V of 0 in E there exists a positive integer E such that E is bounded if for each neighbourhood E of continuous linear mappings between topological vector spaces E and E is equicontinuous if for each neighbourhood E of 0 in E such that E is equicontinuous if for each neighbourhood E of 0 in E such that E is equicontinuous.

We know that a (contrapositive) form of the uniform boundedness theorem for normed spaces has a constructive proof [6, Problem 6 of Chapter 9] (see also [7, Problem 20 of Chapter 7]), and a corollary [23, Theorem 2.8] of the uniform boundedness theorem for a sequence of *sequentially continuous* linear mappings from a separable Banach space into a normed space holds constructively [14, Theorem 7]. However, the corollary for a sequence of *continuous* linear mappings not only implies, but also is equivalent to the following boundedness principle (BD-N) [15, Theorem 21].

BD-N. Every pseudobounded countable subset of **N** is bounded.

Here a subset S of \mathbb{N} is countable if it is a range of \mathbb{N} , pseudobounded if $\lim_{n\to\infty} s_n/n = 0$ for each sequence $(s_n)_n$ in S, and bounded if there exists a positive integer K such that s < K for each $s \in S$; see [13,18,22] for pseudobounded sets.

The boundedness principle BD-N is equivalent to the statement "every sequentially continuous mapping from a separable metric space into a metric space is continuous" [13, Theorem 4], is derivable in intuitionistic mathematics with a continuity principle [13, Proposition 3] and in constructive recursive mathematics with Church's thesis and Markov's principle [13, Proposition 4], and is not provable in $\mathbf{H}\mathbf{A}^{\omega}$ with axiom of choice for all finite types [19].

In the following, we show that the uniform boundedness theorem for topological vector spaces with a sequence of continuous linear mappings is also equivalent to the boundedness principle BD-N, and hence holds not only in classical mathematics but also in intuitionistic mathematics and in constructive recursive mathematics. The result is also a result in constructive reverse mathematics [16,20,25].

Although the result is presented in informal Bishop-style constructive mathematics, it is possible to formalize it in constructive Zermelo–Fraenkel set theory (**CZF**), founded by Aczel [1–3], with the dependent choice axiom (DC), which permits a quite natural interpretation in Martin-Löf type theory [21]. Note that the axiom of countable choice (AC_{ω}) follows from the dependent choice axiom in **CZF**; see [4, Section 8].

2. The main results

A topological vector space E is *separated* if for each neighbourhood U of 0 there exist a neighbourhood V of 0 and an open set W such that $E = U \cup W$ and $V \cap W = \emptyset$.

Each topological vector space E whose open base is *compatible with a set* $\{d_i \mid i \in I\}$ of pseudometrics, that is, compatible with the open base consisting of the sets $B_{i_1,\dots,i_n}(x,\epsilon)=\{y\in E\mid \sum_{k=1}^n d_{i_k}(x,y)<\epsilon\}$, is separated. In fact, for each neighbourhood U of 0, there exist $i_1,\dots,i_n\in I$ and $\epsilon>0$ such that $B_{i_1,\dots,i_n}(0,\epsilon)\subseteq U$, and hence, taking $V=B_{i_1,\dots,i_n}(0,\epsilon/2)$ and $W=\{y\in E\mid \epsilon/2<\sum_{k=1}^n d_{i_k}(0,y)\}$, we have $E=U\cup W$ and $V\cap W=\emptyset$.

On the other hand, suppose that a vector space E with the discrete topology is separated. Then, since $\{0\}$ is a neighbourhood of 0, there exist a neighbourhood V of 0 and an open set W such that $E = \{0\} \cup W$ and $V \cap W = \emptyset$. Hence for each $x \in E$, either $x \in \{0\}$ or $x \in W$: in the former case, we have x = 0; in the latter case, we have x = 0. If $x \in E$, then this is equivalent to the *weak limited principle of omniscience* (WLPO) [8, 1.1]:

$$\forall x \in \mathbf{R}[x = 0 \lor \neg(x = 0)].$$

Since it is doubtful that we can achieve a constructive proof of WLPO, we cannot find out whether the topological vector space **R** with the discrete topology is separated.

A subset *A* of a topological vector space *E* is *unbounded* if there exists a neighbourhood *V* of 0 in *E* such that for each positive integer *k* there exist t > k and $x \in A$ such that $x \notin tV$.

The following theorem generalizes the constructive version of the uniform boundedness theorem [6, Problem 6 of Chapter 9] (see also [7, Problem 20 of Chapter 7]) to topological vector spaces.

Theorem 1. Let $(T_n)_n$ be a sequence of continuous linear mappings from an F-space E into a separated topological vector space F. If there exists a bounded sequence $(x_n)_n$ in E such that $\{T_nx_n \mid n \in \mathbf{N}\}$ is unbounded, then $\{T_nx \mid n \in \mathbf{N}\}$ is unbounded for some $x \in E$.

Download English Version:

https://daneshyari.com/en/article/4662250

Download Persian Version:

https://daneshyari.com/article/4662250

<u>Daneshyari.com</u>