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Abstract

We aim at a conceptually clear and technically smooth investigation of Ackermann’s substitution method [W. Ackermann,
Zur Widerspruchsfreiheit der Zahlentheorie, Math. Ann. 117 (1940) 162—194]. Our analysis provides a direct classification of the
provably recursive functions of PA(e), i.e. Peano Arithmetic framed in the e-calculus.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A classification of the provably recursive functions of Peano Arithmetic (PA) in terms of Kreisel’s class of ordinal
recursive functions was suggested in [1]. This class can in turn be characterised by hierarchies of number-theoretic
functions defined by transfinite recursion up to the ordinal &g, cf. [2]. Kreisel’s solution of the classification problem
for the provably recursive function of PA is based on Ackermann’s consistency proof of arithmetic [3], framed in
Hilbert’s e-calculus.

Hilbert’s e-calculus [4—6] is based on an extension of the language of predicate logic by a term-forming operator
&x. This operator is governed by the critical axiom

A7) D A(exAx)),

where ¢ is an arbitrary term. Within the e-calculus quantifiers become definable by IxA(x) < A(exA(x)) and
Vx A(x) & A(ex—A(x)). The expression e, A(x) is called e-term.

When considering arithmetical systems the e-substitution method [3,4] provides an analogue to Gentzen’s famous
extension [7,8] of his cut-elimination method. Tait [9] describes the substitution method as the general problem of
associating with a formal system S, admitting quantifiers, a free-variable system S* without quantifiers and to give an
effective procedure of transforming statements A in (the language of) S into statements A* in (the language of) S*.
Assume S proves A, then the transform of A is to be an e-substitution instance A* of A. It is obtained by replacing
e-terms by terms in the language of S*. For Peano Arithmetic coached in the e-calculus, this procedure of eliminating
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bounded variables from arbitrary proofs is sufficient to establish consistency (and even 1-consistency). The difficult
part is to show that the substitution method terminates.

Let PA(¢e) denote Peano arithmetic framed in the e-calculus. Based on Gentzen’s work, revealing the role played
by transfinite induction up to €9, Ackermann [3] presented a constructive termination proof of the substitution method
for PA(e). As an important achievement he defined functions, ordinal recursive in &g, that bound the complexity of
the transformation procedure.! It is a direct consequence of Ackermann’s proof, firstly observed by Kreisel [1], that
the provably recursive functions of PA are primitive recursive in some < go-recursive functions. Thus [3] renders a
Hzo-analysis of PA and establishes 1-consistency of PA; see also [10].

We analyse Ackermann’s solution and in particular the given complexity analysis of the substitution method. In our
presentation we follow the original treatment closely. The novelty being that we are able to measure the complexity
of the substitution method directly in terms of the fast-growing Hardy hierarchy (see [11]), i.e., functions from the
Hardy hierarchy replace the specific ordinal recursive functions — seemingly ad-hoc defined — employed in [3]. Thus
we show that any provably recursive function of PA(g) can be elementarily defined in some Hy, @ < &g and therefore
the class of provably recursive functions of PA(e) equals the Hardy class H. The same machinery is applied to
characterise the provably recursive functions of a weak arithmetic theory without induction axiom (or rule); here
the Hardy hierarchy can be replaced by the slow-growing hierarchy. We have replaced the set-theoretical ordinals
employed in Ackermann’s proof by (structured) tree-ordinals.

The reader may wonder why we have based our investigation on the original — quite old — treatment of the
substitution method; the work by Arai [12,13], Avigad [10], Buchholz, Mints, and Tupailo [14], Mints [15,16], and
Tait [17,9] spring to mind as more adequate starting points. However, to our surprise, it turned out that once we
understood how to replace Ackermann’s original representation and codings of (set-theoretical) ordinals by structured
tree-ordinals, the desired results followed quite easily. Thus by changing the employed ordinal notation we can
establish the direct characterisation result, but still follow the original presentation closely enough to render a modern
presentation of Ackermann’s ideas.

In contrast to Gentzen-style proof theory by cut-elimination the substitution method is less dependent on the
structure of a given derivation in S. We employ this fact to separate the actual substitution method and the e-calculus.
This allows us to make an abstract assessment of the transformation procedure incorporated in the substitution method
apart from the e-calculus trade. In the next section we define a class of tautologies S and we re-formulate the problem
of the substitution method accordingly. Only after we have studied the behaviour of the transformation procedure with
respect to the class S in some detail, we relate our findings to a suitable axiomatisation of Peano arithmetic in the
e-calculus and thus obtain the main result of this work.

2. The formal system S

We assume an arbitrary but fixed language L of arithmetic, such that £ does not contain quantifiers. Instead
of including — as a logical connective, negation is defined by asserting that atomic formulas R(¢q,...,#,) occur

in complementary pairs R(f1, ..., ;). Note that R(...) := R(...). In this sense the classical double negation law
becomes a syntactic equality. Using de Morgan’s laws this definition is lifted to the general level.

It is notationally convenient to distinguish between bound (x, y, z, . . .) and free variables (a, b, c, . . .), respectively.
Bound variables are collected in the set BV, while free variables are collected in the set FV; we set V := FV U BV.
Terms in L are constructed from constants, free variables, and function symbols as usual. Semi-terms are like terms but
may also contain bound variables. Formulas are defined with the proviso that only bound variables are allowed to be
quantified and only free variables may occur free. Semi-formulas are similar to formulas with the exception that both
free and bound variables may occur free in a semi-formula. An expression is either a (semi-)term or a (semi-)formula.

We use the metasymbols f, g, k, . .. to denote function symbols, while the metasymbols P, Q, R, ... vary through
predicate symbols. We write ar(f) (ar(P)) to denote the arity of a function (predicate) symbol f (P). Within this
text we are eager to use only the symbols k, [, m, n, p, g as denotations of natural numbers. Deviations from this
convention will be clearly marked. We write [1, n] to denote the interval of natural numbers from 1 to n. Occasionally
we abbreviate tuples of terms (¢1, .. ., #;) as . The length of the tuple will always be clear from the context.

1 By complexity of the substitution method we understand the maximal number of approximation steps necessary till the final substitution is
rendered.
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