Available online at www.sciencedirect.com

. ANNALS OF
: SCIENCE@DIHECT PURE AND
Ao vaselles APPLIED LOGIC
ELSEVIE Annals of Pure and Applied Logic 142 (2006) 55-75

www.elsevier.com/locate/apal

Canonical structure in the universe of set theory: part two

James Cummings®*, Matthew Foreman®, Menachem Magidor®

4 Department of Mathematical Sciences, CMU, Pittsburgh, PA 15213, USA
bDepartment of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
€ Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received 1 March 2003; accepted 8 November 2005
Available online 10 February 2006
Communicated by T. Jech

Abstract

We prove a number of consistency results complementary to the ZFC results from our paper [J. Cummings, M. Foreman,
M. Magidor, Canonical structure in the universe of set theory: part one, Annals of Pure and Applied Logic 129 (1-3) (2004)
211-243]. We produce examples of non-tightly stationary mutually stationary sequences, sequences of cardinals on which every
sequence of sets is mutually stationary, and mutually stationary sequences not concentrating on a fixed cofinality. We also give an
alternative proof for the consistency of the existence of stationarily many non-good points, show that diagonal Prikry forcing
preserves certain stationary reflection properties, and study the relationship between some simultaneous reflection principles.
Finally we show that the least cardinal where square fails can be the least inaccessible, and show that weak square is incompatible
in a strong sense with generic supercompactness.
© 2006 Published by Elsevier B.V.
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1. Introduction

In our paper [6] we prove a number of ZFC results concerning PCF theory, mutual stationarity, square principles and
stationary reflection. In that paper we discussed the informal notion of canonical structure. This notion is supposed to
capture the idea of structure that is not arbitrarily determined by non-constructive existence assumption. For example,
structure that requires the axiom of choice to prove its existence may still be independent of any choices made
in proving it exists. Cardinals of uncountable cofinality fall into this category. Other examples might include fine
structure models of large cardinals. Large cardinal axioms are non-constructive assumptions (as opposed to e.g. the
pairing axiom, where we know exactly what the intended object is). However, as a consequence of their existence
there is various canonical structure, such as U N L[U] for U a normal ultrafilter on a measurable cardinal «.

The notion of canonical structure is different from the notion of absoluteness. We illustrate this with an example.
Assuming the Axiom of Choice, the collection of real numbers has some well-ordered cardinality ¢ and this cardinality
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is independent of the choices made to show it exists. Similarly, one needs the Axiom of Choice to prove that the least
regular uncountable ordinal (¥1) exists. Both of these objects are “canonical” in our sense, but it is independent of
ZFC whether they are in fact identical. We would like to say that these are distinct examples of structure that may or
may not determine identical objects.

In this paper we continue to explore canonical structure by proving consistency results complementary to the ZFC
results in [6].

After some preliminaries in Section 2, we show the following results.

e In Section 3, we give a forcing construction for a sequence of stationary sets which is mutually stationary but not
tightly stationary. The proof involves a combinatorial principle which we dub Coherent Squares.

e In Section 4, we give another forcing construction for a sequence of stationary sets which is mutually stationary
but not tightly stationary. The proof involves some lemmas about uniform structures and mutual stationarity which
are of independent interest. We also show the consistency of a splitting property for mutually stationary sequences.

e In Section 5 we show that on an increasing w-sequence of measurable cardinals, any sequence of stationary sets is
mutually stationary. We also show that for any Prikry-generic sequence, a tail of the sequence has this property.

e In Section 6 we give an alternative proof of a theorem by Shelah, that there can exist sequences of stationary sets
on the R, for n finite which are mutually stationary and do not concentrate on a fixed cofinality.

e In Section 7 we give an alternative construction for a model in which the set of non-good points of cofinality R in
R,+1 18 non-stationary. We also show that if we are given an increasing w-sequence of measurable cardinals such
that the successor of their supremum exhibits a certain stationary reflection property, then the reflection property is
preserved by diagonal Prikry forcing.

e In Section 8 we show that the principle saying that for all A any family of fewer than n many stationary subsets of
[A]¥0 reflect does not imply simultaneous reflection of 7 many sets of w-cofinal ordinals. The proof uses Martin’s
Maximum.

e In Section 9 we show that it is consistent that the least A for which [J, fails is inaccessible.

e In Section 10 we show that if DZ holds for a singular cardinal u of cofinality w, then a cardinal-preserving
countably closed forcing poset can not create any instances of supercompactness below . This shows that there is
an essential problem in a result by Ben-David and Shelah [2].

We would like to thank John Krueger for his careful reading of an earlier version of this paper.
2. Preliminaries

In this section we give some background material on mutual and tight stationarity and PCF theory. For more details
we refer the reader to [6].

The idea of mutual stationarity was introduced by Foreman and Magidor [12] in their work on the non-saturation
of the non-stationary ideal on P, A.

Definition 2.1. Let (S, : ¥ € K) be such that S, C « forall k € K, where K is a set of regular uncountable cardinals.

(1) If N is a set, then N meets (S, : k € K) if and only if sup(N Nk) € S forallk e NN K.
(2) (S¢ : k € K) is mutually stationary if and only if for every algebra .4 on sup(K) there exists N < A such that N
meets (S, : k € K).

If § € P(X) then S is a stationary subset of P(X) if and only if for every algebra A on X there is B € S such that
B < A.

The sequence (S : «k € K) is mutually stationary if and only if the set of subsets of sup(K) which meet
(Sk 1 k € K) is a stationary subset of P(sup(K)). By standard facts [13, Lemma 0] about generalised stationarity,
if X is any set with sup(K) € X then (S, : « € K) is mutually stationary if and only if the set of subsets of X which
meet (S, : k € K) is a stationary subset of P(X).

It is easy to see that if (S, : k € K) is mutually stationary then Sy is stationary for each x. Foreman and Magidor
showed that the converse is false in general, but is true if S, € « N cof(w) for all x. In order to get versions of
Solovay’s splitting theorem and Fodor’s theorem Foreman and Magidor introduced the notion of tight structure and
tightly stationary sequence.
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