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Abstract

We define Up, ;, a square principle in the context of P, A, and prove its consistency relative to ZFC by a directed-closed forcing
and hence that it is consistent to have Up, ; hold when « is supercompact, whereas [ is known to fail under this condition. The
new principle is then extended to produce a principle with a non-reflection property. Another variation on Up, , is also considered,

f

this one based on a family of club subsets of P, (x). Finally, a new square principle for cardinals, denoted U, is introduced. This
principle is proved consistent with « being supercompact. It is shown to yield a non-reflection result similar to that given by .
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The principal aim of this paper is to generalise the square principle to the context of P, A, where for infinite
cardinals k < A, Py A is the set of subsets of A of size <«. The combinatorial research that we present follows a
well-established tradition and is principally guided by the idea of transferring useful notions from the theory of the
combinatorics of ordinal numbers. While Jensen’s diamond principle (see [8]) has been usefully generalised to this
context (originally by Jech in [5], but also by Matet in [13] and [12] and by DZamonja in [3]), the square principle had
not been prior to the work presented here.

We begin by establishing the main properties of the O, principle. We then use O, to construct a Op, , principle.
We then prove its relative consistency to ZFC by forcing. A major point of interest here is that we can have Op_, hold
when « is supercompact, whereas [, is known to fail under this condition. The Op, ; principle serves as a foundation
on which further properties, in particular non-reflection, can be added. Another variation on the Op_, principle is
considered, this one based on a family of club subsets of P, (x). We close by using Op,;, to inspire a new square
principle in the context of the ordinals. This principle, denoted D,{ , is consistent with « being supercompact and yields
a non-reflection result comparable to that given by 0.

Throughout this paper, « is a regular infinite cardinal and A is an infinite cardinal with k < X. We now define P, X.
Note that ¥ and A are arguments and may be replaced by specified cardinals or sets respectively. For example, in this
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paper we will often consider Pjx|(x) where x is a set. Note that P, A is also commonly written as [A]= although this
notation is avoided in this paper.

Definition 1.1. Let P, A = {x C X : |x| < k}. More generally, if y is an arbitrary set, then P, (y) = {x C y : |x]| < «}.

The notation used throughout this paper is standard in set theory, but some explanations are necessary for some
basic symbols. By x C y we mean x C y and x # y. Where we deal specifically with elements and subsets of P, A
we typically use lower case Roman letters x, y, ... for elements and upper case Roman letters X, Y, ... for subsets.
We use script uppercase letters, A, 3, C, . . . for sets of subsets of P, A. We use the lower case Greek alphabet e, 8, . . .
for ordinals and letters from x onwards for cardinals. We write lim(«) as an abbreviation for “« is a limit ordinal”.
We use k t") to mean the nth cardinal after k. When n is 1 or 2 we write kT or k7 respectively. We denote the order
type of an ordinal « by otp(«). For any function, say f, we write dom(f) and im( f) respectively for the domain and
image of f.If f is a function and X is a set then f[X = {(x, f(x)) : x € X}. Thatis, f[X is the function given by
restricting the domain of f to X. In forcing proofs, we will follow the convention that for conditions p, g of a forcing
notion (P O, <), p < g implies that p is a weaker condition than g, in the sense that it offers less information. We
will also use >, < and > in the natural way.

The square principle, denoted [J,, was developed by Jensen and has proved a useful tool in various areas of
mathematical logic.

Definition 1.2. O, is the statement that there is a sequence (Cy, : « € T, lim(«)) with the following properties:

(i) Cq is a club subset of «.
(ii) If cf(o) < & then otp(Cy) < k.
(iii) (Coherence:) If B € Cy and lim(B) then Cg = Cy N B.

Forcing can be used to produce a model of set theory in which O, holds. This approach uses a partial order whose
elements are initial segments of potential square sequences. It is also known that O, holds in L, the universe of
constructible sets. The proof uses fine structure theory and is due to Jensen and given in [8]; alternative accounts can
be found in [2] and [4].

The O, principle defined above encapsulates two distinct properties, namely non-reflection and coherence, both of
which have proved fruitful in combinatorial research.

The non-reflection theorem based upon [, makes use of Fodor’s Lemma. This well-known lemma can be found
in most set theory textbooks, for example in [6]. We present it here without proof.

Lemma 1.3 (Fodor). Suppose that S is a stationary subset of a regular cardinal jv. Suppose also that f : S — [ is
such that f(a) < «a forall a € S. Then there is a stationary subset T C S such that f is constanton T.

Theorem 1.4. [f O, holds then k™ has a non-reflecting stationary subset.

Proof. Suppose (Cy : o < k™ and lim(a)) is as specified in the definition of O,. Let T = {a < kT : cf(a) < k < @
and lim(«)}. To see that this is stationary, let C be an arbitrary club of «* and let C* be the club given by C\k. Then
the wth element of C* is an element of 7.
Now define F : T — « by F(a) = otp(Cy). By part (ii) of Definition 1.2 and the definition of 7', F(x) < k <
otp(x) for all @ € T. Hence, by Lemma 1.3, we can select a stationary subset R € T such that F is constant on R.
Now suppose R reflects in « for some « € R. Let 8,y € RN Cy, with B < y. Then Cg U {B} € C), as B =
sup(Cg). Thus F(y) = otp(Cy) > otp(Cpg) + 1 > F(B). But this is a contradiction because F is constanton R. -

The proof given above introduces regressive function given by f («) = otp(Cy) in order to invoke Fodor’s Lemma.
The proofs of Theorems 3.2 and 5.16 follow a similar strategy but in these cases, the regressive functions are given
explicitly by the relevant principles.

2. A square principle for P, A

After an initial brief study of a trivial square-like principle, we define the Op, ; principle and use forcing to establish
its consistency relative to ZFC. Importantly, in this forcing we can preserve the supercompactness of cardinals <«
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