

Available online at www.sciencedirect.com

ANNALS OF PURE AND APPLIED LOGIC

Annals of Pure and Applied Logic 142 (2006) 76-97

www.elsevier.com/locate/apal

Square and non-reflection in the context of $\mathcal{P}_{\kappa}\lambda$

Greg Piper

School of Mathematics, University of East Anglia, United Kingdom

Received 14 October 2003; received in revised form 16 November 2005; accepted 16 November 2005 Available online 29 March 2006 Communicated by T. Jech

Abstract

We define $\Box_{\mathcal{P}_{\kappa}\lambda}$, a square principle in the context of $\mathcal{P}_{\kappa}\lambda$, and prove its consistency relative to ZFC by a directed-closed forcing and hence that it is consistent to have $\Box_{\mathcal{P}_{\kappa}\lambda}$ hold when κ is supercompact, whereas \Box_{κ} is known to fail under this condition. The new principle is then extended to produce a principle with a non-reflection property. Another variation on $\Box_{\mathcal{P}_{\kappa}\lambda}$ is also considered, this one based on a family of club subsets of $\mathcal{P}_{\kappa_{\kappa}}(x)$. Finally, a new square principle for cardinals, denoted \Box_{κ}^f , is introduced. This principle is proved consistent with κ being supercompact. It is shown to yield a non-reflection result similar to that given by \Box_{κ} . © 2006 Elsevier B.V. All rights reserved.

Keywords: $\mathcal{P}_{\kappa}\lambda$; Square; Non-reflection

1. Introduction

The principal aim of this paper is to generalise the square principle to the context of $\mathcal{P}_{\kappa}\lambda$, where for infinite cardinals $\kappa \leq \lambda$, $\mathcal{P}_{\kappa}\lambda$ is the set of subsets of λ of size $<\kappa$. The combinatorial research that we present follows a well-established tradition and is principally guided by the idea of transferring useful notions from the theory of the combinatorics of ordinal numbers. While Jensen's diamond principle (see [8]) has been usefully generalised to this context (originally by Jech in [5], but also by Matet in [13] and [12] and by Džamonja in [3]), the square principle had not been prior to the work presented here.

We begin by establishing the main properties of the \square_{κ} principle. We then use \square_{κ} to construct a $\square_{\mathcal{P}_{\kappa}\lambda}$ principle. We then prove its relative consistency to ZFC by forcing. A major point of interest here is that we can have $\square_{\mathcal{P}_{\kappa}\lambda}$ hold when κ is supercompact, whereas \square_{κ} is known to fail under this condition. The $\square_{\mathcal{P}_{\kappa}\lambda}$ principle serves as a foundation on which further properties, in particular non-reflection, can be added. Another variation on the $\square_{\mathcal{P}_{\kappa}\lambda}$ principle is considered, this one based on a family of club subsets of $\mathcal{P}_{\kappa_{\kappa}}(x)$. We close by using $\square_{\mathcal{P}_{\kappa}\lambda}$ to inspire a new square principle in the context of the ordinals. This principle, denoted \square_{κ}^f , is consistent with κ being supercompact and yields a non-reflection result comparable to that given by \square_{κ} .

Throughout this paper, κ is a regular infinite cardinal and λ is an infinite cardinal with $\kappa \leq \lambda$. We now define $\mathcal{P}_{\kappa}\lambda$. Note that κ and λ are arguments and may be replaced by specified cardinals or sets respectively. For example, in this

E-mail address: gregorypiper@yahoo.co.uk.

paper we will often consider $\mathcal{P}_{|x|}(x)$ where x is a set. Note that $\mathcal{P}_{\kappa}\lambda$ is also commonly written as $[\lambda]^{<\kappa}$ although this notation is avoided in this paper.

Definition 1.1. Let $\mathcal{P}_{\kappa}\lambda = \{x \subseteq \lambda : |x| < \kappa\}$. More generally, if y is an arbitrary set, then $\mathcal{P}_{\kappa}(y) = \{x \subseteq y : |x| < \kappa\}$.

The notation used throughout this paper is standard in set theory, but some explanations are necessary for some basic symbols. By $x \subset y$ we mean $x \subseteq y$ and $x \ne y$. Where we deal specifically with elements and subsets of $\mathcal{P}_{\kappa}\lambda$ we typically use lower case Roman letters x, y, \ldots for elements and upper case Roman letters X, Y, \ldots for subsets. We use script uppercase letters, A, B, C, \ldots for sets of subsets of $\mathcal{P}_{\kappa}\lambda$. We use the lower case Greek alphabet α, β, \ldots for ordinals and letters from κ onwards for cardinals. We write $\lim(\alpha)$ as an abbreviation for " α is a limit ordinal". We use $\kappa^{(+n)}$ to mean the nth cardinal after κ . When n is 1 or 2 we write κ^+ or κ^{++} respectively. We denote the order type of an ordinal α by $\exp(\alpha)$. For any function, say f, we write $\operatorname{dom}(f)$ and $\operatorname{im}(f)$ respectively for the domain and image of f. If f is a function and X is a set then $f \mid X = \{(x, f(x)) : x \in X\}$. That is, $f \mid X$ is the function given by restricting the domain of f to X. In forcing proofs, we will follow the convention that for conditions f, f of a forcing notion f of f is a weaker condition than f in the sense that it offers less information. We will also use f in the natural way.

The square principle, denoted \square_{κ} , was developed by Jensen and has proved a useful tool in various areas of mathematical logic.

Definition 1.2. \square_{κ} is the statement that there is a sequence $(C_{\alpha} : \alpha \in \kappa^{+}, \lim(\alpha))$ with the following properties:

- (i) C_{α} is a club subset of α .
- (ii) If $cf(\alpha) < \kappa$ then $otp(C_{\alpha}) < \kappa$.
- (iii) (Coherence:) If $\beta \in C_{\alpha}$ and $\lim(\beta)$ then $C_{\beta} = C_{\alpha} \cap \beta$.

Forcing can be used to produce a model of set theory in which \square_{κ} holds. This approach uses a partial order whose elements are initial segments of potential square sequences. It is also known that \square_{κ} holds in L, the universe of constructible sets. The proof uses fine structure theory and is due to Jensen and given in [8]; alternative accounts can be found in [2] and [4].

The \square_{κ} principle defined above encapsulates two distinct properties, namely non-reflection and coherence, both of which have proved fruitful in combinatorial research.

The non-reflection theorem based upon \square_{κ} makes use of Fodor's Lemma. This well-known lemma can be found in most set theory textbooks, for example in [6]. We present it here without proof.

Lemma 1.3 (Fodor). Suppose that S is a stationary subset of a regular cardinal μ . Suppose also that $f: S \to \mu$ is such that $f(\alpha) < \alpha$ for all $\alpha \in S$. Then there is a stationary subset $T \subseteq S$ such that f is constant on T.

Theorem 1.4. If \square_{κ} holds then κ^+ has a non-reflecting stationary subset.

Proof. Suppose $\langle C_{\alpha} : \alpha < \kappa^{+} \text{ and } \lim(\alpha) \rangle$ is as specified in the definition of \square_{κ} . Let $T = \{\alpha < \kappa^{+} : \operatorname{cf}(\alpha) < \kappa < \alpha \}$ and $\lim(\alpha)$. To see that this is stationary, let C be an arbitrary club of κ^{+} and let C^{*} be the club given by $C \setminus \kappa$. Then the ω th element of C^{*} is an element of T.

Now define $F: T \to \kappa$ by $F(\alpha) = \text{otp}(C_{\alpha})$. By part (ii) of Definition 1.2 and the definition of T, $F(\alpha) < \kappa < \text{otp}(\alpha)$ for all $\alpha \in T$. Hence, by Lemma 1.3, we can select a stationary subset $R \subseteq T$ such that F is constant on R.

Now suppose R reflects in α for some $\alpha \in R$. Let $\beta, \gamma \in R \cap C_{\alpha}$ with $\beta < \gamma$. Then $C_{\beta} \cup \{\beta\} \subseteq C_{\gamma}$ as $\beta = \sup(C_{\beta})$. Thus $F(\gamma) = \sup(C_{\gamma}) \ge \sup(C_{\beta}) + 1 > F(\beta)$. But this is a contradiction because F is constant on R.

The proof given above introduces regressive function given by $f(\alpha) = \text{otp}(C_{\alpha})$ in order to invoke Fodor's Lemma. The proofs of Theorems 3.2 and 5.16 follow a similar strategy but in these cases, the regressive functions are given explicitly by the relevant principles.

2. A square principle for $\mathcal{P}_{\kappa}\lambda$

After an initial brief study of a trivial square-like principle, we define the $\Box_{\mathcal{P}_{\kappa}\lambda}$ principle and use forcing to establish its consistency relative to ZFC. Importantly, in this forcing we can preserve the supercompactness of cardinals $\leq \kappa$

Download English Version:

https://daneshyari.com/en/article/4662414

Download Persian Version:

https://daneshyari.com/article/4662414

<u>Daneshyari.com</u>