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a b s t r a c t

The algebraic soft decoding (ASD) algorithm for Reed–Solomon (RS) codes can correct er-
rors beyond the half distance bound with a polynomial time complexity. However, the de-
coding complexity remains high due to the computationally expensive interpolation that
is an iterative polynomial construction process. By performing the interpolation progres-
sively, the progressive ASD (PASD) algorithm can adapt the decoding computation to the
need, leveraging the average complexity of multiple decoding events. But the complexity
reduction is realised at the expense of system memory, since the intermediate interpola-
tion information needs to bememorised. Addressing this challenge, this paper proposes an
improved PASD (I-PASD) algorithm that can alleviate thememory requirement and further
reduce the decoding complexity. A condition on expanding the set of interpolated polyno-
mials will be introduced, which excepts the need of performing iterative updates for the
newly introduced polynomial. Further incorporating the re-encoding transform, the I-PASD
algorithm can reduce the decoding complexity over the PASD algorithm by a factor of 1/3
and its memory requirement is at most half of the PASD algorithm. The complexity and
memory requirement will be theoretically analysed and validated by numerical results.
Finally, we will confirm that the complexity and memory reductions are realised with pre-
serving the error-correction capability of the ASD algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Reed–Solomon (RS) codes are widely used in digi-
tal communications and storage systems. The conven-
tional unique decoding algorithms for RS codes include
Berlekamp–Massey (BM) algorithm [1] and Welch–
Berlekamp (WB) algorithm [2,3]. For an (n, k) RS code,
where n and k are the length and dimension of the code,
respectively, its error-correction capability is limited by
⌊
d−1
2 ⌋ where d = n − k + 1 is the code’s minimum Ham-

ming distance. The algebraic list decoding algorithm [4,5]
improves the error-correction capability by a curve-fitting
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decoding approach, thereby correcting errors beyond the
half distance bound. In this paper, it is referred as the al-
gebraic hard decoding (AHD) algorithm. The algebraic soft
decoding (ASD) algorithm [6] was later proposed, enhanc-
ing the AHD algorithmby introducing an extra process that
maps the reliability information to the interpolation mul-
tiplicity information. Being able to utilise the soft informa-
tion provided by the channel, it outperforms the AHD and
the unique decoding algorithms.

In algebraic decodings, interpolation that is an iter-
ative polynomial construction process [7–9] dominates
the computational complexity and there exists various
complexity reduction approaches. In [10], interpolation
complexity is reduced by eliminating the interpolated
polynomials with a leading order that is greater than
the number of interpolation constraints. In [11], a low-
complexity Chase (LCC) algebraic decoding algorithm was
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proposed. It reduces complexity by exploiting the similar-
ity among the interpolation test-vectors. In [12], by formu-
lating the AHD as a rational curve-fitting problem utilising
the outcome of the BM algorithm, i.e., the error locator and
error-correction polynomials, it results in a significantly
reduced interpolation multiplicity. The re-encoding trans-
form [13–15] is another important approach. Interpolation
complexity can be reduced by choosing k received sym-
bols to perform re-encoding, alleviating the iterative poly-
nomial construction computation. Meanwhile, it should be
mentioned that there exists other efficient realisations for
the interpolation problem, such as the Lee–O’Sullivan ap-
proach [16] and its modified variant [17], and the Bee-
len–Brander approach [18].

The above mentioned approaches were proposed to re-
duce the computation of a single decoding event. By fur-
ther observing the fact that different decoding events may
require different error-correction capability, the progres-
sive ASD (PASD) [19] algorithm was proposed aiming to
reduce the average decoding complexity of multiple de-
coding events. It functions with a progressively enlarged
designed factorisation output list size (OLS), leading to a
gradually strengthened error-correction capability. By en-
larging the factorisation OLS, both the cardinality of the in-
terpolated polynomial set and the size of each polynomial
will be increased. Since such an expansion is realised at
the cost of interpolation computation, the PASD algorithm
adapts the computation of each individual decoding event
to the need, leveraging the average decoding complexity.
Other similar efforts include the work of [20] that analyses
the interpolation cost’s dependence on the receivedword’s
error weight. It also proposed an interpolation algorithm
that gives priority to update the polynomials that aremore
likely to be chosen for factorisation.More recently, amulti-
trial AHD approach was proposed in [21]. It performs a
similar progressive decoding based on the Beelen–Brander
interpolation [18].

However, the PASD algorithm’s merit in reducing the
average decoding complexity is realised at the expense
of system memory, since the intermediate interpolation
information needs to be memorised. In particular, when
a new polynomial is introduced into the set, it needs to
be iteratively updated w.r.t. the constraints which have
been satisfied by the existing polynomials of the set, dur-
ing which the intermediate interpolation information is
needed. Addressing this challenge, this paper proposes
an improved PASD (I-PASD) algorithm that can alleviate
the memory requirement and further reduce the decod-
ing complexity. In particular, a condition on expanding the
polynomial set will be established such that the newly in-
troduced polynomial is excepted from performing the it-
erative updates. It further incorporates the re-encoding
transform, offering a memory requirement that is at most
half of the PASD algorithm and a complexity reduction
over the PASD algorithm by a factor of 1/3. Our complexity
analysis shows that when the decoding terminates with a
factorisation OLS that is greater than one, such a complex-
ity reduction is mainly attributed to the new polynomial
set expansion. Both of the complexity and memory anal-
yses of the I-PASD algorithm will be validated by numeri-
cal results. Finally, our simulation results confirm that the

proposed low complexity algorithm preserves the error-
correction capability of the ASD algorithm.

The rest of this paper is organised as the follows. The
background knowledge of the paper is presented in Sec-
tion 2. Section 3 presents I-PASD algorithm. The memory
and complexity analyses of the new proposal will be pre-
sented in Sections 4 and 5, respectively. The proposed al-
gorithm’s error-correction performance will be presented
in Section 6. Finally, Section 7 concludes the paper.

2. Background knowledge

2.1. Encoding of RS codes

Let Fq = {α0, α1, . . . , αq−1} denote the finite field of
size q, and Fq[x] and Fq[x, y] denote the univariate and
bivariate polynomial rings defined over Fq, respectively.
Given a message vector µ = (µ0, µ1, . . . , µk−1) ∈ Fk

q, the
message polynomial µ(x) ∈ Fq[x] can be written as:

µ(x) = µ0 + µ1x + · · · + µk−1xk−1. (1)
A codeword c of an (n, k) RS code is generated by:
c = (c0, c1, . . . , cn−1)

= (µ(χ0), µ(χ1), . . . , µ(χn−1)), (2)
where c ∈ Fn

q . χ0, χ1, . . . , χn−1 are n distinct elements of
Fq and they are called the code locators.

2.2. The ASD algorithm and its progressive variant

It is assumed that an RS codeword is modulated and
transmitted through a memoryless channel, e.g., the ad-
ditive white Gaussian noise (AWGN) channel. Given a re-
ceived vector Y ∈ R, the q × n reliability matrix 5 can be
obtained, whose entry πij = Pr[cj = αi | Y]. Matrix 5 is
then transformed into a multiplicity matrix M of the same
size [6] and its entrymij represents the interpolationmulti-
plicity for the point (χj, αi), where χj ∈ Fq and cj = µ(χj).
Given a polynomial Q (x, y) =


a,b Qabxayb ∈ Fq[x, y] and

a nonnegative integer pair (r, s), the (r, s)th Hasse deriva-
tive evaluation of Q at point (χj, αi) is defined as [22]:

Dr,s(Q (x, y))|(χj,αi) =


a≥r,b≥s


a
r


b
s


Qabχ

a−r
j αb−s

i . (3)

Q interpolates point (χj, αi) with a multiplicity of mij
if Dr,s(Q (x, y))|(χj,αi) = 0 for all the (r, s) pairs with
r + s < mij. In the following, we will simply use
(r, s)ij to denote the interpolation constraint that im-
plies Dr,s(Q (x, y))|(χj,αi). The number of interpolation con-
straints defined by matrixM is

C(M) =
1
2

q−1
i=0

n−1
j=0

mij(mij + 1). (4)

In decoding an (n, k) RS code, monomials xayb are or-
ganised by the (1, k − 1)-revlex order.1 Given a poly-

1 The (1, k − 1)-weighted degree of monomial xayb is defined as:
deg1,k−1xayb = a + (k − 1)b. Given two distinct monomials xa1yb1

and xa2yb2 , we have ord(xa1yb1 ) < ord(xa2yb2 ), if a1 + (k − 1)b1 <

a2 + (k − 1)b2 , or a1 + (k − 1)b1 = a2 + (k − 1)b2 and b1 < b2 .
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