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When modelling realistic systems, physical constraints on the resources available are often
required. For example, we might say that at most N processes can access a particular
resource at any moment, exactly M participants are needed for an agreement, or an agent
can be in exactly one mode at any moment. Such situations are concisely modelled where
literals are constrained such that at most N , or exactly M , can hold at any moment in time.
In this paper we consider a logic which is a combination of standard propositional linear
time temporal logic with cardinality constraints restricting the numbers of literals that can
be satisfied at any moment in time. We present the logic and show how to represent a
number of case studies using this logic. We propose a tableau-like algorithm for checking
the satisfiability of formulae in this logic, provide details of a prototype implementation
and present experimental results using the prover.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Temporal logic allows the concise specification of temporal order. However, if we need to represent cardinality restrictions
we have to introduce a large number of formulae to the specification making it hard to read and understand, and difficult
for provers to deal with. In addition, while temporal logic has turned out to be a very useful notation across a number of
areas, particularly the specification of concurrent and distributed systems [44,43,27], the complexity of many temporal logics
is often considered to be too high for practical verification (see for example [11,8]). Consequently, simple modal logics, finite
state automata, or even Boolean satisfiability, are typically used in the verification of such systems [46]. This is because the
decision problem for propositional linear temporal logic (PTL) is PSPACE-complete [31] whereas techniques in many of the
above areas are much simpler.

So, the question we are concerned with in this work is the following: can we represent and reason about such cardinality
restrictions (here we use the term constraints) in a compact and transparent way, retaining the useful descriptive powers
of temporal logics, while making the reasoning more efficient in practice? Here we propose and utilise a succinct way
of specifying cardinality constraints. We show that if examples are in (or close to) a particular normal form, using this
representation of constraints simplifies the reasoning. Additionally, we experiment with an implemented prototype prover
for this logic.

To specify the constraints we allow statements stating that less than or equal to k literals, or exactly k literals from some
subset of literals, are true at any moment in time. Note that this approach involves reasoning in the presence of constraints
rather than reasoning about them. Thus, the resulting logic represents a combination of standard temporal logic with (fixed)
constraints that restrict the numbers of literals that can be satisfied at any moment in time. This new approach is particu-
larly useful for (for example):
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• ensuring that a fixed bound is kept on the number of propositions satisfied at any moment to prevent overload;
• in finite collections of communicating automata, ensuring that no more than k automata are in a particular state;
• modelling restrictions on resources, for example at most k vehicles are available or there are at most k seats available;
• modelling the necessity to elect exactly k from n participants.

Motivating Example. Consider a fixed number, n, of robots that can each work, rest or recharge. We assume that there are
only k < n recharging points and only j < n workstations. Let:

• worki represent the fact that robot i is working;
• resti represent the fact that robot i is resting; and
• rechargei represent the fact that robot i is recharging.

Now, we typically want to specify that exactly j of the n robots are working at any one time. In the syntax given later, such
a logic might be defined as TLC(W= j,R�k), where

W= j = {work1, . . . ,workn}= j

R�k = {recharge1, . . . , rechargen}�k

This represents the logic with the constraints that exactly j robots must work at any moment and at most k can recharge
at any moment.

This paper extends preliminary material from our earlier paper [19]. The contributions of the paper are: to define and
analyse a logic which combines both temporal logic and constraints; to show how a number of case studies can be ele-
gantly modelled using this logic; to provide a tableau-like satisfiability algorithm for formulae in this logic giving proofs
of correctness; to provide algorithms for a prototype implementation of this; and give experimental results comparing the
implementation with other temporal provers.

The paper is organised as follows. Section 2 gives the syntax and semantics of the constrained temporal logic, together
with a normal form for this logic. In Section 3 we provide a number of case studies and show how they are specified in this
logic. In Section 4 we provide an algorithm for checking satisfiability of this logic and consider its complexity. In Section 5
we give details of an implementation of the satisfiability checker for this logic and experimental details comparing this
implementation to other tableau reasoners for propositional linear time temporal logic. Finally, in Section 6, we provide
concluding remarks and discuss both related and future work.

2. A constrained temporal logic

Temporal Logic with Cardinality Constraints (TLC) [19] is PTL with some additional constraints, which restrict the num-
bers of literals that can be satisfied at any moment in time. TLC is parameterised by (not necessarily disjoint) sets C∝m

where ∝ ∈ {=,�} and m ∈ N. The formulae of TLC(C∝1m1
1 , C∝2m2

2 , . . .) are constructed under the restriction that, depending
on ∝i , exactly mi literals from every set Ci are true in every state (∝i is =) or less than or equal to mi literals from every
set Ci are true in every state (∝i is �). For example, consider TLC(C=2

1 , C�1
2 ), where C=2

1 = {p,q, r}=2 and C�1
2 = {x, y, z}�1.

Then, at any moment of time, exactly two of p, q, or r are true, and less than or equal to one of x, y, or z is true. In addition
to these constraints, there exists a set of propositions, A, which are standard, unconstrained propositions. Note that, the
‘less than’ constraint C<m can be expressed as C�m−1 and the ‘more than or equal to’ constraint C�m can be expressed as
C̄�n−m , where n is the number of literals in C and by definition C̄ = {x̄ | x ∈ C}, p̄ = ¬p and ¬p = p. Note that by using both
C�m and C�m (encoded as C̄�n−m) we could also obtain C=m . However we choose not to do this, as we aim for a clear
and intuitive way of expressing constraints and this appears to obscure the meaning. Further, the constraint C=1 seems to
be common in applications (see Section 3) which gives additional weight for the C=m construct to be primitive.

We note that we can express the information in our constrained sets as temporal formulae. For example given the
constraint C=2

1 = {p,q, r}=2 above, this can be represented by the following temporal formula

(
(p ∨ q) ∧ (p ∨ r) ∧ (q ∨ r)

) ∧ (¬p ∨ ¬q ∨ ¬r)

2.1. TLC syntax

A constraint C∝imi
i is a tuple (Ci,∝i,mi), where Ci is a set of literals with a cardinality restriction ∝i mi , such that

∝i ∈ {=,�} and mi ∈ N. For TLC, the future-time temporal connectives we use include ‘ �’ (in the next moment) and ‘U ’
(until). Formally, TLC(C∝1m1

1 , . . . , C∝nmn
n ) formulae are constructed from the following elements:

• a set, Props = {p | p ∈ C∝imi
i } ∪ {p | ¬p ∈ C∝imi

i } ∪ A of propositional symbols (where 1 � i � n and A are termed
‘unconstrained’ propositions);
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