
Journal of Applied Logic 12 (2014) 395–416

Contents lists available at ScienceDirect

Journal of Applied Logic

www.elsevier.com/locate/jal

Temporal logics for concurrent recursive programs:
Satisfiability and model checking ✩

Benedikt Bollig a, Aiswarya Cyriac a,∗, Paul Gastin a, Marc Zeitoun b

a LSV, ENS Cachan, CNRS & INRIA, France
b LaBRI, Univ. Bordeaux & CNRS, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 August 2012
Accepted 7 April 2014
Available online 14 May 2014

Keywords:
Temporal logic
Concurrent recursive programs
Nested words
Mazurkiewicz traces
Satisfiability
Model checking

We develop a general framework for the design of temporal logics for concurrent
recursive programs. A program execution is modeled as a partial order with multiple
nesting relations. To specify properties of executions, we consider any temporal
logic whose modalities are definable in monadic second-order logic and which, in
addition, allows PDL-like path expressions. This captures, in a unifying framework,
a wide range of logics defined for ranked and unranked trees, nested words, and
Mazurkiewicz traces that have been studied separately. We show that satisfiability
and model checking are decidable in EXPTIME and 2EXPTIME, depending on the
precise path modalities.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with the analysis of computer programs and systems that consist of several compo-
nents sharing an access to resources such as variables or channels. Any component itself might be built of
several modules that can be called recursively resulting in complex infinite-state systems. The analysis of
such programs, which consist of a fixed number of recursive threads communicating with one another, is
particularly challenging, due to the intrinsically high complexity of interaction between its components. All
the more, it is important to provide tools and algorithms that support the design of correct programs, or
verify if a given program corresponds to a specification.

It is widely acknowledged that linear-time temporal logic (LTL) [32] is a yardstick among the specification
languages. It combines high expressiveness (equivalence to first-order logic [22]) with a reasonable complexity
of decision problems such as satisfiability and model checking. LTL has originally been considered for
finite-state sequential programs. As real programs are often concurrent or rely on recursive procedures, LTL
has been extended in two directions.

✩ Supported by ARCUS, DOTS (ANR-06-SETIN-003), DIGITEO LoCoReP and ANR 2010 BLAN 0202 01 FREC.
* Corresponding author.

E-mail addresses: bollig@lsv.ens-cachan.fr (B. Bollig), cyriac@lsv.ens-cachan.fr (A. Cyriac), gastin@lsv.ens-cachan.fr
(P. Gastin), mz@labri.fr (M. Zeitoun).

http://dx.doi.org/10.1016/j.jal.2014.05.001
1570-8683/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jal.2014.05.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jal
mailto:bollig@lsv.ens-cachan.fr
mailto:cyriac@lsv.ens-cachan.fr
mailto:gastin@lsv.ens-cachan.fr
mailto:mz@labri.fr
http://dx.doi.org/10.1016/j.jal.2014.05.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jal.2014.05.001&domain=pdf


396 B. Bollig et al. / Journal of Applied Logic 12 (2014) 395–416

First, asynchronous finite-state programs (asynchronous automata) [36] are a formal model of shared-
memory systems and properly generalize finite-state sequential programs. Their executions are no longer
sequential (i.e., totally ordered) but can be naturally modeled as graphs or partial orders. In the literature,
these structures are known as Mazurkiewicz traces. They look back on a long list of now classic results that
smoothly extend the purely sequential setting (e.g., expressive equivalence of LTL and first-order logic)
[16,17].

Second, in an influential paper, Alur and Madhusudan extend the finite-state sequential model to visibly
pushdown automata (VPAs) [1]. VPAs are a flexible model for recursive programs, where subroutines can be
called and executed while the current thread is suspended. The execution of a VPA is still totally ordered.
However, it comes with some extra information that relates a subroutine call with the corresponding return
position, which gives rise to the notion of nested words [1]. Alur et al. recently defined versions of LTL
towards this infinite-state setting [3,2] that can be considered as canonical counterparts of the classical logic
introduced by Pnueli.

To model programs that involve both recursion and concurrency, one needs to mix both views. Most
approaches to modeling concurrent recursive programs, however, reduce concurrency to interleaving and
neglect a behavioral semantics that preserves independencies between program events [5,24,25,33]. The first
model for concurrent recursive programs with partial-order semantics was considered in [7]. Executions of
their concurrent VPAs equip Mazurkiewicz traces with multiple nesting relations, as depicted in the figure
below.

Temporal logics have not been considered for this natural concurrency-aware behavior model. Further-
more there is for now no canonical merge of the two existing approaches. It must be noted that satisfiability
is undecidable when considering multiple nesting relations, even for simple logics. In fact, local control
state reachability is also undecidable as two stacks (multiple nesting relations) are Turing powerful. Yet, it
becomes decidable if we impose suitable restrictions to the system behaviors.

The first such restriction called bounded context-switching was proposed in [33] where a bound is placed
on the number of times control can be transferred from one process to another. Furthermore experimental
results suggest that bugs in programs usually manifest themselves within a few context switches [30].
A generalization of bounded context was proposed in [24] where a bound is placed on the number of
phases: all processes may progress in a phase making recursive function calls, but at most one process is
allowed to return from function calls. Thus a bounded phase behavior may have an unbounded number of
context switches. While both these techniques allow under-approximate reachability, bounded phase covers
significantly more behaviors than bounded context. Hence we adopt the bounded-phase restriction. We
think that our constructions for bounded phase would serve as the first step towards getting similar results
for other orthogonal restrictions such as bounded scope [23], ordered [6,11], or even theoretical but generic
restrictions on behavior graphs such as bounded tree-width [28] or bounded split-width [14].

In this paper, we present a framework for defining (linear-time) temporal logics for concurrent recursive
programs. A temporal logic may be parametrized by a finite set of modalities that are definable in monadic
second-order logic (cf. [19]). Thus, existing temporal logics for sequential recursive programs [3,2,15] as well
as for concurrent non-recursive programs [16,19,20] are easily definable in our framework. In addition, our



Download English Version:

https://daneshyari.com/en/article/4662930

Download Persian Version:

https://daneshyari.com/article/4662930

Daneshyari.com

https://daneshyari.com/en/article/4662930
https://daneshyari.com/article/4662930
https://daneshyari.com

