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We extend the framework of Inductive Logic to Second Order languages and 
introduce Wilmers’ Principle, a rational principle for probability functions on Second 
Order languages. We derive a representation theorem for functions satisfying this 
principle and investigate its relationship with the first order principles of Regularity 
and Super Regularity.
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1. Introduction

In the framework of Pure Inductive Logic, a rational agent’s belief function is usually regarded as a 
probability function on the set of first order sentences of a certain, fixed language L. This language contains 
constants representing the objects of the universe and predicates representing the properties of these objects. 
This allows an agent to express statements about the universe.

So far such statements have, to our knowledge, been limited to first order expressions, allowing the agent 
to make existential or universal statements about the objects. As the so-called Geach–Kaplan statement2

shows (see e.g. [1]), an agent could increase her expressive power if she were to extend the set of expressions 
available to include second order statements.
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∃X
(
∃x∃y

(
X(x) ∧ X(y) ∧ R(x, y)

)
∧ ∃x¬X(x) ∧ ∀x∀y

(
X(x) ∧ R(x, y) → X(y)

))

as an example of a second order statement that cannot be formulated in first order logic. As far as the work presented in this paper 
is concerned the statement is mentioned merely as a motivational example of why one might want to study second order logic in 
the first place.
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As we identify an agent’s belief in a statement with the value the agent’s belief function assigns to it, 
allowing the agent to use second order expressions will require her to extend the domain of her belief function 
to include second order sentences.

Unsurprisingly, this leads to a number of complications. Since Second Order logic is inherently incomplete 
(see e.g. [8]), we will have to be careful picking a suitable framework for Second Order Inductive Logic. At 
the same time, we would want to have a suitable interpretation of universal and existential quantification 
over the predicates in L.

In this paper we intend to provide such a framework, allowing an agent to extend her expressive power to 
second order logic. Once such a framework is given, we can study rational principles involving second order 
logic. We will give an example of one such principle, called Wilmers’ Principle, and provide a representation 
theorem for second order belief functions that satisfy this principle. We will then consider the consequences 
of this principle for the thorny question of Universal Truth for first order statements.

2. Second Order probability functions

As with traditional Inductive Logic3 for example [2], we will work in a unary language L with predicate 
symbols Pi and constants ai for i ∈ {1, 2, 3, . . .} = N

+ but without function symbols or equality. Let 
F1L, S1L, QFS1L respectively denote the first order formulae, sentences and quantifier free sentences of L.

Let T L denote the set of structures M for L in which the constants ai are interpreted as themselves and 
|M | = {ai | i ∈ N

+}, so every element of the universe of M is denoted by a constant symbol. Similarly we 
shall use Pj to denote {ai | M |= Pj(ai)}, leaving the M implicit whenever this cannot cause confusion.

We say that w : S1L → [0, 1] is a probability function on S1L, if for any ϑ, ϕ ∈ S1L, ψ(x) ∈ F1L,

(P1) If |= ϑ, then w(ϑ) = 1.
(P2) If ϑ |= ¬ϕ, then w(ϑ ∨ ϕ) = w(ϑ) + w(ϕ).
(P3) w(∃xψ(x)) = limn→∞ w(

∨n
i=1 ψ(ai)).

To our mind the central problem of (Pure) Inductive Logic can be picturesquely captured as follows: 
Imagine an agent inhabiting a structure M ∈ T L but having no further knowledge, so in particular the 
agent has no particular interpretation in mind for the constant and predicate symbols. In that case what 
probability w(ϑ) should the agent rationally, or logically, give to ϑ ∈ S1L? Or more precisely, since we 
obviously intend for these probability values to be coherent, what probability function w should the agent 
rationally or logically adopt?

In the absence of any clear definition of what is meant here by ‘rationally’ (which for the purpose of 
this paper we identify with ‘logically’) the usual method of tackling this question is by imposing certain 
ostensibly rational, or at least not irrational, requirements on w and seeing where that leads. For example 
the symmetry between the constants ai, and between the predicates Pj , from the agent’s point of view 
surely requires that w should satisfy:

Constant Exchangeability, Ex. w satisfies Ex, if for all ϑ ∈ S1L and all permutations σ of N+,

w
(
ϑ(a1, . . . , an)

)
= w

(
ϑ(aσ(1), . . . , aσ(n))

)
.

Predicate Exchangeability, Px. w satisfies Px, if for all ϑ ∈ S1L, and all permutations σ of N+,

3 Actually Inductive Logic is more commonly presented with only finitely many predicate symbols but as we would in any case 
advocate the rationality of Unary Language Invariance in this context, see for example [7, Chapter 16], this would ultimately lead 
to the same situation.
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