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Formulae of linear temporal logic (LTL) can be used to specify (wanted or unwanted) 
properties of a dynamical system. In model checking, the system’s behaviour is 
described by a transition system, and one needs to check whether all possible traces 
of this transition system satisfy the formula. In runtime verification, one observes 
the actual system behaviour, which at any point in time yields a finite prefix of a 
trace. The task is then to check whether all continuations of this prefix to a trace 
satisfy (violate) the formula. More precisely, one wants to construct a monitor, i.e., 
a finite automaton that receives the finite prefix as input and then gives the right 
answer based on the state currently reached.
In this paper, we extend the known approaches to LTL runtime verification in two 
directions. First, instead of propositional LTL we use the more expressive temporal 
logic ALC-LTL, which can use axioms of the Description Logic (DL) ALC instead of 
propositional variables to describe properties of single states of the system. Second, 
instead of assuming that the observed system behaviour provides us with complete 
information about the states of the system, we assume that states are described in an 
incomplete way by ALC-knowledge bases. We show that also in this setting monitors 
can effectively be constructed. The (double-exponential) size of the constructed 
monitors is in fact optimal, and not higher than in the propositional case. As an 
auxiliary result, we show how to construct Büchi automata for ALC-LTL-formulae, 
which yields alternative proofs for the known upper bounds of deciding satisfiability 
in ALC-LTL.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Formulae of linear temporal logic (LTL) [26] can be used to specify (wanted or unwanted) properties of 
a dynamical system. For example, assume that the system we want to model is a TV set, and consider the 
properties on, turn_off, and turn_on, which respectively express that the set is on, receives a turn-off signal 
from the remote control, and receives a turn-on signal from the remote control. The LTL-formula

E-mail addresses: baader@tcs.inf.tu-dresden.de (F. Baader), lippmann@tcs.inf.tu-dresden.de (M. Lippmann).

http://dx.doi.org/10.1016/j.jal.2014.09.001
1570-8683/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jal.2014.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jal
mailto:baader@tcs.inf.tu-dresden.de
mailto:lippmann@tcs.inf.tu-dresden.de
http://dx.doi.org/10.1016/j.jal.2014.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jal.2014.09.001&domain=pdf


F. Baader, M. Lippmann / Journal of Applied Logic 12 (2014) 584–613 585

φtv := �(
turn_on → X

(
on ∧ (Xon) U turn_off

))
says that, whenever the set receives the turn-on signal, it is on at the next time point, and it stays on (i.e., 
is on also at the next time point) until it receives the turn-off signal (since we use a “strong until” this 
signal has to come eventually).

In model checking [7,12], one assumes that the system’s behaviour can be described by a transition 
system. The verification task is then to check whether all possible traces of this transition system satisfy the 
formula. In contrast, in runtime verification [13], one does not model all possible behaviours of the system 
by a transition system. Instead, one observes the actual behaviour of the system, which at any time point 
yields a finite prefix u of a trace. The task is then to check whether all continuations of this prefix to a trace 
satisfy (violate) the given LTL-formula φ. Thus, there are three possible answers1 to a runtime verification 
problem (u, φ):

• �, if all continuations of u to an infinite trace satisfy φ;
• ⊥, if all continuations of u to an infinite trace do not satisfy φ;
• ?, if none of the above holds, i.e., there is a continuation that satisfies φ, and one that does not satisfy φ.

For example, consider the two prefixes u := {¬on, ¬turn_off, turn_on} and u′ := {¬on, ¬turn_off, turn_on}
{¬on, ¬turn_off, ¬turn_on} and the formula φtv from our example. For the prefix u, the answer is ?, whereas 
for u′ it is ⊥. For our specific formula φtv, there is no prefix for which the answer would be �.

It should be noted, however, that runtime verification is not really about solving a single such problem 
(u, φ). In practice, one observes the behaviour of the system over time, which means that the prefix is 
continuously extended by adding new letters. The runtime verification device should not simply answer the 
problems (ε, φ), (σ0, φ), (σ0σ1, φ), (σ0σ1σ2, φ), . . . independently of each other. What one is looking for is a 
monitoring device (called monitor in the following) that successively accepts as input the next letter, and 
then computes the answer to the next runtime verification problem in constant time (where the size of φ is 
assumed to be constant). This can, for example, be achieved as follows [9,11]. For a given LTL-formula φ, 
one constructs a deterministic Moore automaton Mφ (i.e., a deterministic finite-state automaton with 
state output) such that the state reached by processing input u gives as output the answer to the runtime 
verification problem (u, φ). If u is then extended to uσ by observing the next letter σ of the actual system 
behaviour, it is sufficient to perform one transition of Mφ in order to get the answer for (uσ, φ). Since 
Mφ depends on φ (which is assumed to be constant), but not on u, this kind of monitoring device can 
answer the runtime verification question for (u, φ) in time linear in the length of u. More importantly, the 
delay between answering the question for u and for uσ is constant, i.e., it does not depend on the length of 
the already processed prefix u. Basically, such a monitor can be constructed from Büchi automata for the 
formula φ and its negation ¬φ.2

Using propositional LTL for runtime verification presupposes that (the relevant information about) the 
states of the system can be represented using propositional variables, more precisely conjunctions of propo-
sitional literals. If the states actually have a complex internal structure, this assumption is not realistic. 
In order to allow for a more appropriate description of such complex states, one can use the extension of 
propositional LTL to ALC-LTL introduced in [4,6].3 From the syntactic point of view, the difference between 
propositional LTL and ALC-LTL is that, in the latter, ALC-axioms (i.e., concept and role assertions as well 
as general concept inclusion axioms (GCIs) formulated in the Description Logic ALC [28]) are used in place 
of propositional variables. From the semantic point of view, ALC-LTL structures are infinite sequences 

1 There are also variants of runtime verification for propositional LTL that work with only two or even four possible answers [10].
2 A Büchi automaton for an LTL-formula ψ accepts the LTL structures satisfying this formula, viewed as infinite words over an 

appropriate alphabet [7,32].
3 A comparison of ALC-LTL with other temporal DLs [2,3,25] is beyond the scope of this introduction. It can be found in [4,6].
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