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We characterize those identities and independencies which hold for all probability
functions on a unary language satisfying the Principle of Atom Exchangeability. We then
show that if this is strengthen to the requirement that Johnson’s Sufficientness Principle
holds, thus giving Carnap’s Continuum of inductive methods for languages with at least two
predicates, then new and somewhat inexplicable identities and independencies emerge, the
latter even in the case of Carnap’s Continuum for the language with just a single predicate.
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1. Introduction

To this day the Continuum of Inductive Methods described by Carnap in [1–4] continues to be adapted and promoted
as paradigm solutions to various problems within Inductive Logic. For example arithmetic combinations of these functions
figure almost exclusively in recent attempts to provide probability functions exhibiting certain specific features of analogical
influence, see [5,11,12,15,16].

There seem to be several good reasons for this focus. Firstly this Continuum has a widely acceptable justification in terms
of its ‘rationality’: There is a putatively rational requirement, namely Johnson’s Sufficientness Principle, that we can impose
on an inductive method (i.e. probability function) which forces it to be precisely a member of Carnap’s Continuum (see also
Johnson’s earlier derivation of this in [9]), at least when we assume that the language has more than one predicate. Secondly
the Continuum has a simple form, making it easy to work with, whilst the parameter it involves has a clear interpretation
which readily permits generalizations.

Carnap’s original goal in his Inductive Logic programme was to develop an inductive method which could be applied to
real world problems of induction, or more generally the assignment of probabilities based on some finite body of evidence,
and which furthermore was logical in the sense that it’s conclusions followed mechanically from the evidence via certain
precisely formulated rules or principles. The arrival on the scene of Goodman’s Grue Paradox, [6,7], however highlighted an
evident flaw in the practicality of the approach; that in real (as opposed to toy) examples there is usually so much available
evidence that even if it could be suitably formulated in the language of the problem it would be completely infeasible to
take it as one’s premise set.

Whilst many philosophers have seen this as the end of the programme as a practical, rather than simply a theoretical,
project, nevertheless apparently similar aspirations to Carnap’s still seem to underlie papers such as those on analogical
reasoning cited above. One explanation for this is that whilst all our available knowledge in a real world situation is just too
much to handle nevertheless most of it should be redundant or irrelevant and possibly what really does matter can be sim-
ply formulated. This raises the question we shall consider in this paper, to what extent is this a reasonable assumption for
the members of Carnap’s Continuum, more precisely under what circumstances is a sentence θ stochastically independent
of a sentence φ for all members of Carnap’s Continuum?
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Before that however we need to spend a little time introducing some standard notation. The experienced reader might
therefore be advised to skip the next section, only referring back to it as necessary.

2. Notation

Let L be a predicate language with just q (unary) predicates, P1, P2, . . . , Pq , constants a1 for i = 1,2,3, . . . and no other
relation, constant or function symbols. As usual the intention here is that these ai exhaust the universe.

Let α1(x),α2(x), . . . ,α2n (x) denote the atoms of L, that is the 2q formulae of L of the form

±P1(x) ∧ ±P2(x) ∧ · · · ∧ ±Pq(x).

So for example the atoms in the case q = 2 are P1(x) ∧ P2(x), P1(x) ∧ ¬P2(x), ¬P1(x) ∧ P2(x), ¬P1(x) ∧ ¬P2(x). Knowing
which atom an ai satisfies tells us exactly which of the P j(x) ai does or does not satisfy, and hence tells us everything there
is to know about ai .

A state description, Θ(b1,b2, . . . ,bm), for distinct choices b1,b2, . . . ,bm from the ai , is a sentence of the form

m∧
i=1

α ji (bi), (1)

and similarly tells us all there is to know about b1,b2, . . . ,bm .
Notice that the state descriptions for b1,b2, . . . ,bm are disjoint and any quantifier free sentence φ(b1,b2, . . . ,bm) of L is

logically equivalent to a disjunction

s∨
k=1

Θk(b1,b2, . . . ,bm)

of distinct state descriptions Θk(�b) for b1,b2, . . . ,bm . Hence if w is a probability function on L (for a definition see for
example [8] or [14]) then

w
(
φ(b1,b2, . . . ,bm)

) =
s∑

k=1

w
(
Θk(b1,b2, . . . ,bm)

)
. (2)

We say that w satisfies Constant Exchangeability, Ex, if w(φ(b1,b2, . . . ,bm)) depends only on φ(x1, x2, . . . , xm) and not on
the (distinct) instantiating constants b1,b2, . . . ,bm . By (2) it is already enough that this holds for state descriptions. Since
all the probability functions we shall consider will satisfy Ex our results will apply for general b1,b2, . . . ,bm once proven
for a1,a2, . . . ,am .

The spectrum of a state description Θ(b1, . . . ,bm) as in (1) is the multiset1 n̄ = {n1,n2, . . . ,n2q }, where ni is the number
of times that the atom αi(x) appears amongst the α j1 (x),α j2 (x), . . . ,α jm (x).

We say that w satisfies Atom Exchangeability, Ax, if w(Θ(b1,b2, . . . ,bm)) depends only on the spectrum n̄ of the state
description Θ(b1,b2, . . . ,bm). In this case we shall write w(n̄) for w(Θ(�b)).

Finally we say that w satisfies Johnson’s Sufficientness Principle, JSP, if for a state description Θ(b1,b2, . . . ,bm) as in (1),
w(αi(bm+1) | Θ(b1,b2, . . . ,bm)) depends only on m and ni . It is well known that JSP implies Ax which in turn implies Ex.

As shown originally by Johnson, [9] (and independently later by Kemeny, see [4, section 19] and [10]) if the number of
predicates, q, is at least 2 and the probability function w satisfies JSP then w is a member of Carnap’s Continuum of Inductive
Methods. That is, w = cλ for some 0 � λ � ∞ where, with the above notation, cλ is the probability function satisfying Ax
such that

cλ

(
αi(bm+1) ∧ Θ(b1,b2, . . . ,bm)

) = (ni + λ/2q)

(m + λ)
· cλ

(
Θ(b1,b2, . . . ,bm)

)
. (3)

The cases λ = 0,∞ here are rather exceptional and until further notice we shall restrict ourselves to 0 < λ < ∞ when
discussing the cλ (though still referring to these as Carnap’s Continuum).

3. Stochastic independence and Ax

Let w be a probability function on L satisfying Ax. Then from (2) for φ(a1, . . . ,am) a sentence of L,

w
(
φ(a1, . . . ,am)

) =
∑

n̄

fφ(n̄)w(n̄),

1 Multisets are just like sets except that elements may be repeated.



Download English Version:

https://daneshyari.com/en/article/4662996

Download Persian Version:

https://daneshyari.com/article/4662996

Daneshyari.com

https://daneshyari.com/en/article/4662996
https://daneshyari.com/article/4662996
https://daneshyari.com

