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We introduce a sequent calculus that is sound and complete with respect to propositional
contingencies, i.e., formulas which are neither provable nor refutable. Like many other
sequent and natural deduction proof systems, this calculus possesses cut elimination and
the subformula property and has a simple proof search mechanism.
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1. Introduction

We are frequently interested in non-trivial statements, i.e., statements which are true in some possible worlds, and false
in others. In classical propositional logic, such contingent statements are easily defined semantically, e.g., by non-constant
truth assignments. Proving contingency of a statement using exhaustive search over all propositional interpretations is
possible for small-size formulas, but for real problems we would like to have something similar to a theorem prover —
a “contingency prover”.1

For the first time, a contingency proof system appeared in [8], and the first proper proof system was recently introduced
in [6]. The latter system is based on transformation rules allowing the user to translate a formula into a perfect disjunctive
normal form, and then to remove the redundant variables in order to obtain a contingency axiom.

In this paper we introduce a contingency sequent calculus that, like other sequent calculi, seems to be more appropriate
for automatic theorem proving. Of course, our calculus cannot solve the complexity of the decision problem for contin-
gencies, because it is trivially NP-complete. However, in some cases, the sequent prover might produce a shorter proof. In
addition, the contingency sequent calculus is much simpler than other proof systems, and better represents the nature of
contingency. This is because simplicity is a common feature of sequent and natural deduction calculi versus Hilbert like
proof systems.

This paper is organized as follows. In the next section we present syntax and semantics of contingency. Section 3 deals
with the propositional contingency calculus. Namely, this section contains the proofs of soundness, completeness, cut elim-
ination, and the subformula property for contingency calculus. Finally, in Section 4 we summarize the main results of this
paper and present a direction for future research.

2. Syntax and semantics

The underlying language is the language of propositional logic with standard propositional connectives ∨ (disjunction),
∧ (conjunction), ⊃ (implication), and ¬ (negation) and an infinite set of propositional variables Var.

1 A similar problem exists for unprovable and satisfiable formulas, where various proof systems were proposed for propositional logic and for the
first-order logic of finite interpretations, see [1,2,4,5,7,8].
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A sequent is an expression of the form Γ → �, where Γ and � are finite (possibly empty) sequences of formu-
las. To define the propositional counterpart of a sequent we need the following notation. For a sequence of formulas
Θ = A1, A2, . . . , An , we denote by

∧
Θ and

∨
Θ the formulas

∧n
i=1 Ai and

∨n
i=1 Ai , respectively.2 In this notation, the

propositional counterpart of the sequent Γ → � is the formula
∧

Γ ⊃ ∨
�. A sequent Γ → � is contingency if the formula∧

Γ ⊃ ∨
� is neither true nor false.

Next we recall the semantics of sequents. An interpretation M is a set of propositional variables and satisfiability of a
formula ϕ by M, denoted M |� ϕ , is defined in the usual manner. We say that M satisfies a sequent Γ → �, denoted
M |� Γ → �, if M |� ϕ for some formula ϕ that occurs in �, or M �|� ψ for some formula ψ that occurs in Γ . That is,
M |� Γ → � if M |� ∧

Γ ⊃ ∨
�.

Semantics of contingency is based on two interpretations which serve as contingency witnesses: one for establishing that
a formula/sequent is not falsity, and the other for establishing that it is not a tautology.

We say that the pair of interpretations (M,N) is a contingency witness for a formula ϕ , denoted (M,N) |�c ϕ , if M |� ϕ ,
and N �|� ϕ . The formula ϕ is contingent, denoted |�c ϕ , if it has a contingency witness. Note that |�c ϕ if and only if |�c ¬ϕ .

The pair of interpretations (M,N) is a contingency witness for a sequent Γ → �, denoted (M,N) |�c Γ → �, if M |�
Γ → � and N �|� Γ → �. The sequent Γ → � is contingently valid, or just c-valid, denoted |�c Γ → � if it has a contingency
witness, i.e., (M,N) |�c Γ → � for some pair of propositional interpretations M and N.

3. Propositional contingency calculus

The proof system for propositional contingencies is similar to that in [1,7], where sequent proof systems for non-
tautologies (anti-sequents) were introduced. Naturally, the set of axioms for contingencies is a subset of the set of axioms
for non-tautologies. However, the introduction rules for ∨ and ⊃ into antecedent and the introduction rules for ∧ into
succedent are very different from the corresponding rules for anti-sequents. Note that contingency is preserved under nega-
tion, and therefore, it is natural that many rules move a formula from the antecedent of a sequent to its succedent and vice
versa.

3.1. Propositional axioms and introduction rules

The Contingency Calculus (CC) is defined as follows. It has one axiom scheme AxCC that consists of all sequents Γ → �

such that

• Γ and � are (finite) sequences of propositional variables, i.e., elements of Var,
• Γ is not empty or � is not empty, and
• Γ and � have no common elements, i.e., no propositional variable occurs both in Γ and �.

Note that AxCC is similar to the propositional part of the scheme in [7]. The only difference is that AxCC does not contain
the empty sequent, because this sequent is false in every interpretation.

Usually, for every logical connective, a sequent calculus has introduction rules into both antecedent and succedent. This
also happens for the contingency sequent calculus CC. However, the semantics of contingency is different from that of
validity, because in many rules the main formula is actually moved to the opposite part of the sequent. Therefore, some of
the rules of CC have no counterparts in the classical standard sequent calculus like LK from [3, Chapter III, § 1], or even in
the contingency sequent calculus ([1,7]).

The introduction rules for the logical connectives are as follows.3

¬ Γ → �,ϕ

Γ,¬ϕ → �

Γ,ϕ → �

Γ → �,¬ϕ

∧ Γ,ϕ,ψ → �

Γ,ϕ ∧ ψ → �

Γ,ϕ,ψ → � Γ → �,ϕ

Γ → �,ϕ ∧ ψ

Γ,ϕ,ψ → � Γ → �,ψ

Γ → �,ϕ ∧ ψ

∨ Γ → �,ϕ,ψ Γ,ϕ → �

Γ,ϕ ∨ ψ → �

Γ → �,ϕ,ψ Γ,ψ → �

Γ,ϕ ∨ ψ → �

Γ → �,ϕ,ψ

Γ → �,ϕ ∨ ψ

⊃ Γ,ϕ → �,ψ Γ → �,ϕ

Γ,ϕ ⊃ ψ → �

Γ,ϕ → �,ψ Γ,ψ → �

Γ,ϕ ⊃ ψ → �

Γ,ϕ → �,ψ

Γ → �,ϕ ⊃ ψ

There are also six structural rules of inference in CC. The first two are the classical interchange rules

Interchange
Γ ′,ϕ,ψ,Γ ′′ → �

Γ ′,ψ,ϕ,Γ ′′ → �

Γ → �′,ϕ,ψ,�′′

Γ → �′,ψ,ϕ,�′′

2 Thus, if n = 0, i.e., Θ is empty,
∧

Θ is truth and
∨

Θ is falsity.
3 Note the duality between ∨ and ∧, and between introductions of ¬ into antecedent and succedent.



Download English Version:

https://daneshyari.com/en/article/4663004

Download Persian Version:

https://daneshyari.com/article/4663004

Daneshyari.com

https://daneshyari.com/en/article/4663004
https://daneshyari.com/article/4663004
https://daneshyari.com

