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We show that Euclidean geometry in suitably high dimension can be expressed as a theory
of orthogonality of subspaces with fixed dimensions and fixed dimension of their meet.
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1. Introduction

While the notion of orthogonality of lines in Euclidean geometry has well founded meaning (it is frequently used as a
primitive notion, see [3,4]), orthogonality of subspaces can be defined in several different ways. Two of them were shown
in [5] to be sufficient in Euclidean geometry; actually, each of these two considered on the universe of subspaces of fixed
dimension can be used to reinterpret the underlying point-line affine space and after that to define line orthogonality. Thus
the procedure of reinterpretation consists, in fact, in two steps and in the second step one should define orthogonality
of lines in terms of a given orthogonality of subspaces. In this note we show that such a definition is possible for each
prescribed values of dimensions of the considered subspaces (Theorem 2.4(ii)).

The notion of orthogonality of subspaces is not a unique-meaning relation, even if dimensions of the subspaces involved
are fixed. Therefore, we have to deal with a family of possible relations of orthogonality. And in this note we show that each
one of these relations is sufficient to express the underlying geometry provided the latter has sufficiently high dimension
(Theorem 2.4(i)).

So, finally, we prove that Euclidean geometry can be expressed in the language with points, subspaces (of fixed dimen-
sions), and orthogonality of subspaces. It is a folklore that affine geometry can be expressed as a theory of point-k-subspace
incidence. Euclidean geometry appears when we impose a relation of orthogonality on that “affine” structure.

Our result does not solve the problem whether Euclidean geometry can be expressed in the language with k-subspaces as
individuals and some of the orthogonalities introduced above as a single primitive notion, in that way, possibly, generalizing
[5]. We conjecture that the answer is affirmative, but the question is addressed in other papers.

We close the paper with a list of some more interesting properties of the orthogonalities considered here. This list is
not intended as a complete axiom system, but we think that at least some of its items can be used to build such a system
characterizing orthogonality of subspaces.

2. Results

Let M = 〈S,L,⊥〉 be an Euclidean space, where A := 〈S,L〉 is an affine space with L ⊂ 2S and ⊥ ⊂ L × L is a line
orthogonality (cf. [3]). Up to an isomorphism M corresponds to 〈V ,LV ,⊥ξ 〉 where V is a vector space, LV is the set of
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Fig. 1.

translates of 1-dimensional subspaces of V and ⊥ξ is the orthogonality determined by a nondegenerate symmetric bilinear
form ξ on V with no isotropic directions. For each nonnegative integer k, Hk stands for the class of all k-dimensional
subspaces of M, and H stands for all subspaces of M. The empty set ∅ is considered an affine subspace, that is ∅ ∈ H. If
X1, X2 ∈H we write X1 	 X2 for the least subspace in H that contains X1 ∪ X2 (i.e. the meet of all elements of H containing
X1 ∪ X2). Note that the ground field is not GF(2). So, from elementary affine geometry we have this fact.

Fact 2.1.

(i) The family Hk is definable in A for each nonnegative integer k � dim(A).
(ii) Let 0 < k < dim(A). Then the family L is definable in the incidence structure 〈S,Hk〉. Consequently, A is definable in 〈S,Hk〉.

Recall that M is definitionally equivalent to the structure 〈S,L,⊥⊥〉 (cf. e.g. an axiom system for ⊥⊥ in [2,7]), where
⊥⊥ ⊂ S2 × S2 is defined in M by the formula

a,b ⊥⊥ c,d :⇐⇒ there are L1, L2 ∈ L such that a,b ∈ L1 ⊥ L2  c,d. (1)

Given any two X, Y ∈H we write

X ⊥ Y :⇐⇒ a,b ⊥⊥ c,d for all a,b ∈ X, c,d ∈ Y . (2)

Note that for X, Y ∈ L the relation defined by (2) coincides with the orthogonality we have started from. If X ⊥ Y then
X ∩ Y is at most a point; we write

X ⊥∗ Y :⇐⇒ X ⊥ Y and X ∩ Y �= ∅. (3)

Recall that for any two subspaces X, V ∈ H such that X ⊂ V and any point q ∈ X there is the unique maximal X ′ ∈ H
such that q ∈ X ′ ⊥∗ X , X ′ ⊂ V , and X 	 X ′ = V . We call X ′ an orthocomplement of X in V through q. If X is a point then
necessarily X = {q} and X ′ = V .

Let us define now (cf. Fig. 1)

X1 ⊥◦ X2 :⇐⇒ there is a point q ∈ X1 ∩ X2 and Z1, Z2 ∈ H such that

q ∈ Z1, Z2 ⊥∗ X1 ∩ X2, Z1 ⊥∗ Z2 and (X1 ∩ X2) 	 Zi = Xi for i = 1,2. (4)

It is seen that the relation ⊥◦ is symmetric. It is also not too hard to note that the following holds

X1 ⊥◦ X2 ⇐⇒ there is Zi ∈ H such that Zi ⊥∗ X3−i and (X1 ∩ X2) 	 Zi = Xi (5)

for both i = 1,2. Note that when X1 ∩ X2 is a point then X1 ⊥◦ X2 and X1 ⊥∗ X2 are equivalent. Recall also a known formula

q ∈ X1, X2 ⊥∗ Y  q �⇒ Y ⊥∗ (X1 	 X2). (6)

The motivation for such general definition (4) is reflection geometry (cf. [1,6]). It is known that the commutativity of
reflections on subspaces characterizes orthogonality or incidence. More precisely: two reflections on different subspaces
commutate iff the subspaces are orthogonal or incident. In our settings, denote by σX the reflection in a subspace X , i.e. an
involutory isometry that fixes X pointwise; then

σX1σX2 = σX2σX1 ⇐⇒ X1 ⊥◦ X2. (7)

One might call ⊥◦ an orthogonality, but note that (7) yields the formula

X1 ⊂ X2 �⇒ X1 ⊥◦ X2, (8)
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