A note on orthogonality of subspaces in Euclidean geometry

Jacek Konarzewski, Mariusz Żynel *
Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland

ARTICLE INFO

Article history:

Received 19 June 2012
Accepted 28 January 2013
Available online 1 March 2013

Keywords:

Euclidean geometry
Orthogonality
Adjacency

Abstract

We show that Euclidean geometry in suitably high dimension can be expressed as a theory of orthogonality of subspaces with fixed dimensions and fixed dimension of their meet.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

While the notion of orthogonality of lines in Euclidean geometry has well founded meaning (it is frequently used as a primitive notion, see $[3,4]$), orthogonality of subspaces can be defined in several different ways. Two of them were shown in [5] to be sufficient in Euclidean geometry; actually, each of these two considered on the universe of subspaces of fixed dimension can be used to reinterpret the underlying point-line affine space and after that to define line orthogonality. Thus the procedure of reinterpretation consists, in fact, in two steps and in the second step one should define orthogonality of lines in terms of a given orthogonality of subspaces. In this note we show that such a definition is possible for each prescribed values of dimensions of the considered subspaces (Theorem 2.4(ii)).

The notion of orthogonality of subspaces is not a unique-meaning relation, even if dimensions of the subspaces involved are fixed. Therefore, we have to deal with a family of possible relations of orthogonality. And in this note we show that each one of these relations is sufficient to express the underlying geometry provided the latter has sufficiently high dimension (Theorem 2.4(i)).

So, finally, we prove that Euclidean geometry can be expressed in the language with points, subspaces (of fixed dimensions), and orthogonality of subspaces. It is a folklore that affine geometry can be expressed as a theory of point-k-subspace incidence. Euclidean geometry appears when we impose a relation of orthogonality on that "affine" structure.

Our result does not solve the problem whether Euclidean geometry can be expressed in the language with k-subspaces as individuals and some of the orthogonalities introduced above as a single primitive notion, in that way, possibly, generalizing [5]. We conjecture that the answer is affirmative, but the question is addressed in other papers.

We close the paper with a list of some more interesting properties of the orthogonalities considered here. This list is not intended as a complete axiom system, but we think that at least some of its items can be used to build such a system characterizing orthogonality of subspaces.

2. Results

Let $\mathfrak{M}=\langle S, \mathcal{L}, \perp\rangle$ be an Euclidean space, where $\mathfrak{A}:=\langle S, \mathcal{L}\rangle$ is an affine space with $\mathcal{L} \subset 2^{S}$ and $\perp \subset \mathcal{L} \times \mathcal{L}$ is a line orthogonality (cf. [3]). Up to an isomorphism \mathfrak{M} corresponds to $\left\langle V, \mathcal{L}_{V}, \perp_{\xi}\right\rangle$ where V is a vector space, \mathcal{L}_{V} is the set of

[^0]

Fig. 1.
translates of 1-dimensional subspaces of V and \perp_{ξ} is the orthogonality determined by a nondegenerate symmetric bilinear form ξ on V with no isotropic directions. For each nonnegative integer k, \mathcal{H}_{k} stands for the class of all k-dimensional subspaces of \mathfrak{M}, and \mathcal{H} stands for all subspaces of \mathfrak{M}. The empty set \emptyset is considered an affine subspace, that is $\emptyset \in \mathcal{H}$. If $X_{1}, X_{2} \in \mathcal{H}$ we write $X_{1} \sqcup X_{2}$ for the least subspace in \mathcal{H} that contains $X_{1} \cup X_{2}$ (i.e. the meet of all elements of \mathcal{H} containing $X_{1} \cup X_{2}$). Note that the ground field is not $\operatorname{GF}(2)$. So, from elementary affine geometry we have this fact.

Fact 2.1.

(i) The family \mathcal{H}_{k} is definable in \mathfrak{A} for each nonnegative integer $k \leqslant \operatorname{dim}(\mathfrak{A})$.
(ii) Let $0<k<\operatorname{dim}(\mathfrak{A})$. Then the family \mathcal{L} is definable in the incidence structure $\left\langle S, \mathcal{H}_{k}\right\rangle$. Consequently, \mathfrak{A} is definable in $\left\langle S, \mathcal{H}_{k}\right\rangle$.

Recall that \mathfrak{M} is definitionally equivalent to the structure $\langle S, \mathcal{L}, \Perp\rangle$ (cf. e.g. an axiom system for \Perp in [2,7]), where $\Perp \subset S^{2} \times S^{2}$ is defined in \mathfrak{M} by the formula

$$
\begin{equation*}
a, b \Perp c, d \quad: \Longleftrightarrow \quad \text { there are } L_{1}, L_{2} \in \mathcal{L} \text { such that } a, b \in L_{1} \perp L_{2} \ni c, d \tag{1}
\end{equation*}
$$

Given any two $X, Y \in \mathcal{H}$ we write

$$
\begin{equation*}
X \perp Y \quad: \Longleftrightarrow a, b \Perp c, d \quad \text { for all } a, b \in X, c, d \in Y . \tag{2}
\end{equation*}
$$

Note that for $X, Y \in \mathcal{L}$ the relation defined by (2) coincides with the orthogonality we have started from. If $X \perp Y$ then $X \cap Y$ is at most a point; we write

$$
\begin{equation*}
X \perp^{*} Y \quad: \Longleftrightarrow \quad X \perp Y \quad \text { and } \quad X \cap Y \neq \emptyset . \tag{3}
\end{equation*}
$$

Recall that for any two subspaces $X, V \in \mathcal{H}$ such that $X \subset V$ and any point $q \in X$ there is the unique maximal $X^{\prime} \in \mathcal{H}$ such that $q \in X^{\prime} \perp^{*} X, X^{\prime} \subset V$, and $X \sqcup X^{\prime}=V$. We call X^{\prime} an orthocomplement of X in V through q. If X is a point then necessarily $X=\{q\}$ and $X^{\prime}=V$.

Let us define now (cf. Fig. 1)

$$
\begin{align*}
X_{1} \oplus X_{2} & : \Longleftrightarrow \\
& \text { there is a point } q \in X_{1} \cap X_{2} \text { and } Z_{1}, Z_{2} \in \mathcal{H} \text { such that } \tag{4}\\
& q \in Z_{1}, Z_{2} \perp^{*} X_{1} \cap X_{2}, \quad Z_{1} \perp^{*} Z_{2} \quad \text { and } \quad\left(X_{1} \cap X_{2}\right) \sqcup Z_{i}=X_{i} \quad \text { for } i=1,2 .
\end{align*}
$$

It is seen that the relation ϕ is symmetric. It is also not too hard to note that the following holds

$$
\begin{equation*}
X_{1} \oplus X_{2} \Longleftrightarrow \text { there is } Z_{i} \in \mathcal{H} \text { such that } Z_{i} \perp^{*} X_{3-i} \text { and }\left(X_{1} \cap X_{2}\right) \sqcup Z_{i}=X_{i} \tag{5}
\end{equation*}
$$

for both $i=1$, 2. Note that when $X_{1} \cap X_{2}$ is a point then $X_{1} \Phi X_{2}$ and $X_{1} \perp^{*} X_{2}$ are equivalent. Recall also a known formula

$$
\begin{equation*}
q \in X_{1}, X_{2} \perp^{*} Y \ni q \quad \Longrightarrow \quad Y \perp^{*}\left(X_{1} \sqcup X_{2}\right) \tag{6}
\end{equation*}
$$

The motivation for such general definition (4) is reflection geometry (cf. [1,6]). It is known that the commutativity of reflections on subspaces characterizes orthogonality or incidence. More precisely: two reflections on different subspaces commutate iff the subspaces are orthogonal or incident. In our settings, denote by σ_{X} the reflection in a subspace X, i.e. an involutory isometry that fixes X pointwise; then

$$
\begin{equation*}
\sigma_{X_{1}} \sigma_{X_{2}}=\sigma_{X_{2}} \sigma_{X_{1}} \Longleftrightarrow X_{1} \Phi X_{2} . \tag{7}
\end{equation*}
$$

One might call Φ an orthogonality, but note that (7) yields the formula

$$
\begin{equation*}
X_{1} \subset X_{2} \quad \Longrightarrow \quad X_{1} \Phi X_{2} \tag{8}
\end{equation*}
$$

https://daneshyari.com/en/article/4663042

Download Persian Version:

https://daneshyari.com/article/4663042

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: konarzewski20@wp.pl (J. Konarzewski), mariusz@math.uwb.edu.pl (M. Żynel).

