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The model-checking problem for monadic second-order logic on graphs is fixed-parameter
tractable with respect to tree-width and clique-width. The proof constructs finite automata
from monadic second-order sentences. These automata recognize the terms over fixed fi-
nite signatures that define graphs satisfying the given sentences. However, this construction
produces automata of hyper-exponential sizes, and is thus impossible to use in practice
in many cases. To overcome this difficulty, we propose to specify the transitions of au-
tomata by programs instead of tables. Such automata are called fly-automata. By using
them, we can check certain monadic second-order graph properties with limited quanti-
fier alternation depth, that are nevertheless interesting for Graph Theory. We give explicit
constructions of automata relative to graphs of bounded clique-width, and we report on
experiments.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is well known from [5,6,10,12,16] that the model-checking problem for monadic second-order (MS) logic on graphs
is fixed-parameter tractable (FPT) with respect to tree-width and clique-width. The proof uses certain graph decomposi-
tions: tree-decompositions for tree-width as parameter and decompositions in complete bipartite graphs for clique-width
as parameter. Both types of decompositions are formalized by terms over finite sets of graph operations. The proof uses
also finite automata, constructed from the MS sentences that express the properties to check. These automata recognize the
terms that define graphs satisfying the given sentences.

There are two difficulties for turning this result into a usable algorithm. The first one is the parsing problem consisting
in constructing an appropriate decomposition of the given graph. The second difficulty is due to the enormous sizes of
the automata constructed from MS sentences. To address the latter, we propose to use fly-automata, i.e., automata whose
transitions are specified by programs and not compiled in (huge) tables. We also present some tools that limit the number
of states of the constructed automata: we construct “small” automata associated with some basic graph properties (and
not with the atomic formulas) and we write formulas with set terms defined with the Boolean operations and the set
variables.

In this article, we only consider the model-checking problem for monadic second-order sentences not using edge set
quantifications. The relevant parameter is clique-width. Since for a class of graphs, bounded tree-width implies bounded
clique-width, this approach also applies if tree-width is taken as parameter. Using tree-width as parameter allows to handle
sentences written with edge set quantifications, but presents other difficulties (see [7]). Our objective is to implement the
following theorem of [10] (we denote by Fk the finite set of graph operations that generates the graphs of clique-width at
most k).
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Theorem 1.

(1) For every monadic second-order sentence ϕ and every integer k, one can construct a finite automaton recognizing the terms over
Fk that denote graphs satisfying ϕ .

(2) Every monadic second-order graph property P can be checked in time f P (k) · n3 for a simple directed or undirected graph with n
vertices and of clique-width at most k.

Assertion (1) gives an automaton that accepts or rejects a term in linear time in the size of the given term (a term over
Fk for fixed k). For Assertion (2) we need to solve the parsing problem. Checking if a given graph has clique-width at most
a given integer k is NP-complete if k is part of the input [14] but there exists a cubic approximation algorithm (see below
Section 2.2). This algorithm takes time g(k) · n3 to construct a term of size O (n) over Fh(k) that denotes a given graph with
n vertices and of clique-width at most k, where g and h are fixed functions. In other words the model-checking problem
for monadic second-order logic on graphs is fixed-parameter cubic for a parameter consisting of a bound on the clique-width
of the input graph and the MS sentence expressing the considered property.

Our only concern in this article is the construction of the automata of Assertion (1). They are constructed by induction
on the structure of the input sentences (where universal quantifications are replaced by negations and existential quantifica-
tions). Those associated with the atomic formulas are easy to build and relatively “small”. Products of automata are used for
conjunction and disjunction. Complementation applied to deterministic automata is used for negation. A construction usu-
ally called “projection” is used for existential quantifications and introduces nondeterminism. It follows that determinization
must be performed before each application of complementation. Since existential quantifications produce nondeterminism,
quantifier alternation is the source of the hyper-exponential size of the constructed automata in the general case. This is
actually unavoidable if one wants a construction taking as input arbitrary MS sentences (see, e.g., [17,29,31]). In order to
overcome this difficulty, some authors focus their attention on particular problems instead of trying to implement the gen-
eral theorem (see, e.g., [1,22,23,18,19]). We do not follow this route: we present some techniques that make the situation
manageable for a large fragment of MS logic able to express interesting graph properties.

The article is organized as follows: Sections 2–4 review definitions about graphs, clique-width, automata and monadic
second-order logic. Sections 4 and 5 constitute a tool box for the implementation of Theorem 1. Sections 5 and 6 detail
the constructions of automata for the atomic formulas and for some basic graph properties. By using new atomic formulas
expressing these properties and Boolean set terms (that do not cost much in terms of sizes of automata), we can express
significant graph properties without quantifier alternation. Some constructions of Section 6 are somewhat complicated, and
we prove their correctness. Section 7 defines fly-automata and some constructions concerning them. Section 8 reports on
experiments with fly-automata. Section 9 is a conclusion.

2. Terms, graphs and clique-width

2.1. Terms and graphs

Definition 2 (Terms and their syntactic trees). A functional signature F is a set of function symbols, each being given together
with a natural number called its arity: ρ( f ) denotes the arity of the symbol f . The set of terms over F is denoted by T (F ).
A language over F is a subset of T (F ).

We now introduce some definitions relative to the internal structure of terms. A position of t is an occurrence of some
symbol. We denote by Pos(t) the set of positions of t and by Pos(t, f ) the set of occurrences in t of a symbol f . Hence
Pos(t)=⋃{Pos(t, f ) | f ∈ F }. The size |t| of t is the cardinality of Pos(t).

Terms will be written with commas and parentheses (that do not count in |t|). For example the term t =
f (g(h(a),b), c, g(g(b, c), c)) has size 11. Positions will be designated by numbers corresponding to their ranks seen from
left to right and starting at 1. In this example, Pos(t, c) = {6,10,11}. (They can be denoted in other ways, for instance by
Dewey words, as in [4], our main reference for automata on terms.)

The syntactic tree of a term t is a rooted, labeled and ordered tree. Its set of nodes is Pos(t). Each node u is labeled by the
symbol f such that u ∈ Pos(t, f ) and it has an ordered sequence of ρ( f ) sons. The root (roott ) is the first position, and the
occurrences of the nullary symbols are the leaves. (The terminology of rooted trees will thus be applied to terms, via their
syntactic trees.) The partial order �t on Pos(t) is defined such that u �t v if and only if u = v or v is a proper ancestor of
u. (Positions are integers but this order is not the usual order on integers.) We denote by t/u the subterm of t issued from a
node u. In the above example, t/2= g(h(a),b). The context of u in t consists of the function symbols that occur at positions
not below u: formally, it is the unique term over F with a unique occurrence of a variable x and such that t is equal to the
substitution in c of t/u for x. In the above example, the context of u = 2 in t is f (x, c, g(g(b, c), c)).

Let H be a finite signature (possibly H = F ), and h : H→ F be an arity preserving mapping, i.e., such that ρ(h( f ))= ρ( f )
for every f ∈ H . For every t ∈ T (H), we let h(t) ∈ T (F ) be the term obtained from t by replacing f by h( f ) at each of its
occurrences. The mapping h on terms is called a relabeling.

Definition 3 (Graphs). All graphs are finite and simple. They can have loops. A graph G is identified with the relational
structure 〈V G , edgG〉 where edgG is a binary relation representing adjacency: (x, y) ∈ edgG if and only if there is a directed
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